Publications

Results 26–50 of 100

Search results

Jump to search filters

Characterization and Optimization of Building Blocks for Specialized Computing Platforms

Ruzic, Brandon R.; Young, Kevin C.; Metodi, Tzvetan S.

As noise limits the performance of quantum processors, the ability to characterize this noise and develop methods to overcome it is essential for the future of quantum computing. In this report, we develop a complete set of tools for improving quantum processor performance at the application level, including low-level physical models of quantum gates, a numerically efficient method of producing process matrices that span a wide range of model parameters, and full-channel quantum simulations. We then provide a few examples of how to use these tools to study the effects of noise on quantum circuits.

More Details

Efficient flexible characterization of quantum processors with nested error models

New Journal of Physics

Nielsen, Erik N.; Rudinger, Kenneth M.; Proctor, Timothy J.; Young, Kevin C.; Blume-Kohout, Robin J.

We present a simple and powerful technique for finding a good error model for a quantum processor. The technique iteratively tests a nested sequence of models against data obtained from the processor, and keeps track of the best-fit model and its wildcard error (a metric of the amount of unmodeled error) at each step. Each best-fit model, along with a quantification of its unmodeled error, constitutes a characterization of the processor. We explain how quantum processor models can be compared with experimental data and to each other. We demonstrate the technique by using it to characterize a simulated noisy two-qubit processor.

More Details

Gate Set Tomography

Quantum

Nielsen, Erik N.; Gamble, John K.; Rudinger, Kenneth M.; Scholten, Travis; Young, Kevin C.; Blume-Kohout, Robin J.

Gate set tomography (GST) is a protocol for detailed, predictive characterization of logic operations (gates) on quantum computing processors. Early versions of GST emerged around 2012-13, and since then it has been refined, demonstrated, and used in a large number of experiments. This paper presents the foundations of GST in comprehensive detail. The most important feature of GST, compared to older state and process tomography protocols, is that it is calibration-free. GST does not rely on pre-calibrated state preparations and measurements. Instead, it characterizes all the operations in a gate set simultaneously and self-consistently, relative to each other. Long sequence GST can estimate gates with very high precision and efficiency, achieving Heisenberg scaling in regimes of practical interest. In this paper, we cover GST’s intellectual history, the techniques and experiments used to achieve its intended purpose, data analysis, gauge freedom and fixing, error bars, and the interpretation of gauge-fixed estimates of gate sets. Our focus is fundamental mathematical aspects of GST, rather than implementation details, but we touch on some of the foundational algorithmic tricks used in the pyGSTi implementation.

More Details

Efficient, Predictive Tomography of Multi-Qubit Quantum Processors

Blume-Kohout, Robin J.; Nielsen, Erik N.; Rudinger, Kenneth M.; Sarovar, Mohan S.; Young, Kevin C.

After decades of R&D, quantum computers comprising more than 2 qubits are appearing. If this progress is to continue, the research community requires a capability for precise characterization (“tomography”) of these enlarged devices, which will enable benchmarking, improvement, and finally certification as mission-ready. As world leaders in characterization -- our gate set tomography (GST) method is the current state of the art – the project team is keenly aware that every existing protocol is either (1) catastrophically inefficient for more than 2 qubits, or (2) not rich enough to predict device behavior. GST scales poorly, while the popular randomized benchmarking technique only measures a single aggregated error probability. This project explored a new insight: that the combinatorial explosion plaguing standard GST could be avoided by using an ansatz of few-qubit interactions to build a complete, efficient model for multi-qubit errors. We developed this approach, prototyped it, and tested it on a cutting-edge quantum processor developed by Rigetti Quantum Computing (RQC), a US-based startup. We implemented our new models within Sandia’s PyGSTi open-source code, and tested them experimentally on the RQC device by probing crosstalk. We found two major results: first, our schema worked and is viable for further development; second, while the Rigetti device is indeed a “real” 8-qubit quantum processor, its behavior fluctuated significantly over time while we were experimenting with it and this drift made it difficult to fit our models of crosstalk to the data.

More Details

Detecting and tracking drift in quantum information processors

Nature Communications

Proctor, Timothy J.; Revelle, Melissa R.; Nielsen, Erik N.; Rudinger, Kenneth M.; Lobser, Daniel L.; Maunz, Peter; Blume-Kohout, Robin J.; Young, Kevin C.

If quantum information processors are to fulfill their potential, the diverse errors that affect them must be understood and suppressed. But errors typically fluctuate over time, and the most widely used tools for characterizing them assume static error modes and rates. This mismatch can cause unheralded failures, misidentified error modes, and wasted experimental effort. Here, we demonstrate a spectral analysis technique for resolving time dependence in quantum processors. Our method is fast, simple, and statistically sound. It can be applied to time-series data from any quantum processor experiment. We use data from simulations and trapped-ion qubit experiments to show how our method can resolve time dependence when applied to popular characterization protocols, including randomized benchmarking, gate set tomography, and Ramsey spectroscopy. In the experiments, we detect instability and localize its source, implement drift control techniques to compensate for this instability, and then demonstrate that the instability has been suppressed.

More Details

Probing quantum processor performance with pyGSTi

Quantum Science and Technology

Nielsen, Erik N.; Rudinger, Kenneth M.; Proctor, Timothy J.; Russo, Antonio R.; Young, Kevin C.; Blume-Kohout, Robin J.

PyGSTi is a Python software package for assessing and characterizing the performance of quantum computing processors. It can be used as a standalone application, or as a library, to perform a wide variety of quantum characterization, verification, and validation (QCVV) protocols on as-built quantum processors. We outline pyGSTi's structure, and what it can do, using multiple examples. We cover its main characterization protocols with end-to-end implementations. These include gate set tomography, randomized benchmarking on one or many qubits, and several specialized techniques. We also discuss and demonstrate how power users can customize pyGSTi and leverage its components to create specialized QCVV protocols and solve user-specific problems.

More Details

A volumetric framework for quantum computer benchmarks

Quantum

Blume-Kohout, Robin J.; Young, Kevin C.

We propose a very large family of benchmarks for probing the performance of quantum computers. We call them volumetric benchmarks (VBs) because they generalize IBM's benchmark for measuring quantum volume [1]. The quantum volume benchmark defines a family of square circuits whose depth d and width w are the same. A volumetric benchmark defines a family of rectangular quantum circuits, for which d and w are uncoupled to allow the study of time/space performance trade-offs. Each VB defines a mapping from circuit shapes - (w, d) pairs - to test suites C(w, d). A test suite is an ensemble of test circuits that share a common structure. The test suite C for a given circuit shape may be a single circuit C, a specific list of circuits {C1... CN} that must all be run, or a large set of possible circuits equipped with a distribution Pr(C). The circuits in a given VB share a structure, which is limited only by designers' creativity. We list some known benchmarks, and other circuit families, that fit into the VB framework: several families of random circuits, periodic circuits, and algorithm-inspired circuits. The last ingredient defining a benchmark is a success criterion that defines when a processor is judged to have “passed” a given test circuit. We discuss several options. Benchmark data can be analyzed in many ways to extract many properties, but we propose a simple, universal graphical summary of results that illustrates the Pareto frontier of the d vs w trade-off for the processor being benchmarked.

More Details
Results 26–50 of 100
Results 26–50 of 100