Publications

54 Results

Search results

Jump to search filters

Reducing microgrid availability to reduce costs for coastal Puerto Rican communities

Science and Technology for the Built Environment

Villa, Daniel L.; Quiroz, Jimmy E.

Renewable microgrids are sustainable, resilient solutions to mitigate and adapt to climate change. Making electric loads nearly 100% available (i.e., power remains on) during outages increases cost. Near 100% availability is required when human life or high-cost assets are involved, but availability can be reduced for less consequential loads leading to lower costs. This study analyses costs for photo-voltaic and lithium-ion battery microgrids with availability ranging from 0–99%. We develop a methodology to analyse three Puerto Rican coastal communities. We consider power outage effects for hurricanes, earthquakes, and everyday outages. The results show cost versus availability from 0–99%. There is 27–31% cost reduction at 80% availability in comparison to 99% availability. A regression model of microgrid availability versus three ratios: 1) the annual generation to demand ratio, 2) storage to interruption energy ratio, and 3) peak storage to load ratio produced a coefficient of determination of 0.99949 with 70% of the data used for training and 30% for testing. The results can therefore be extended to other coastal Puerto Rican communities of varying sizes that have ratios within the ranges analysed in this study. This can empower decision makers to rapidly analyse designs that have availabilities well below 100%.

More Details

Microgrid Tiered Circuits Effects for a Planned Housing Community in Puerto Rico

ASHRAE Transactions

Villa, Daniel L.; Quiroz, Jimmy E.; O'Neill-Carrillo, Efrain; Jeffers, Robert

Puerto Rico faced a double strike from hurricanes Irma and Maria in 2017. The resulting damage required a comprehensive rebuild of electric infrastructure. There are plans and pilot projects to rebuild with microgrids to increase resilience. This paper provides a techno-economic analysis technique and case study of a potential future community in Puerto Rico that combines probabilistic microgrid design analysis with tiered circuits in building energy modeling. Tiered circuits in buildings allow electric load reduction via remote disconnection of non-critiñl circuits during an emergency. When coupled to a microgrid, tiered circuitry can reduce the chances of a microgrid's storage and generation resources being depleted. The analysis technique is applied to show 1) Approximate cost savings due to a tiered circuit structure and 2) Approximate cost savings gained by simultaneously considering resilience and sustainability constraints in the microgrid optimization. The analysis technique uses a resistive capacitive thermal model with load profiles for four tiers (tier 1-3 and non-critical loads). Three analyses were conducted using: 1) open-source software called Tiered Energy in Buildings and 2) the Microgrid Design Toolkit. For a fossil fuel based microgrid 30% of the total microgrid costs of 1.18 million USD were calculated where the non-tiered case keeps all loads 99.9% available and the tiered case keeps tier 1 at 99.9%, tier 2 at 95%, tier 3 at 80% availability, with no requirement on non-critical loads. The same comparison for a sustainable microgrid showed 8% cost savings on a 5.10 million USD microgrid due to tiered circuits. The results also showed 6-7% cost savings when our analysis technique optimizes sustainability and resilience simultaneously in comparison to doing microgrid resilience analysis and renewables net present value analysis independently. Though highly specific to our case study, similar assessments using our analysis technique can elucidate value of tiered circuits and simultaneous consideration of sustainability and resilience in other locations.

More Details

Cybersecurity for Electric Vehicle Charging Infrastructure

Johnson, Jay; Anderson, Benjamin; Wright, Brian J.; Quiroz, Jimmy E.; Berg, Timothy M.; Graves, Russell; Daley, Josh; Phan, Kandy; Kunz, Michael; Pratt, Rick; Carroll, Tom; Oneil, Lori R.; Dindlebeck, Brian; Maloney, Patrick; Brien, David'; Gotthold, David; Varriale, Roland; Bohn, Ted; Hardy, Keith

As the U.S. electrifies the transportation sector, cyberattacks targeting vehicle charging could impact several critical infrastructure sectors including power systems, manufacturing, medical services, and agriculture. This is a growing area of concern as charging stations increase power delivery capabilities and must communicate to authorize charging, sequence the charging process, and manage load (grid operators, vehicles, OEM vendors, charging network operators, etc.). The research challenges are numerous and complicated because there are many end users, stakeholders, and software and equipment vendors interests involved. Poorly implemented electric vehicle supply equipment (EVSE), electric vehicle (EV), or grid operator communication systems could be a significant risk to EV adoption because the political, social, and financial impact of cyberattacks — or public perception of such — would ripple across the industry and produce lasting effects. Unfortunately, there is currently no comprehensive EVSE cybersecurity approach and limited best practices have been adopted by the EV/EVSE industry. There is an incomplete industry understanding of the attack surface, interconnected assets, and unsecured inter faces. Comprehensive cybersecurity recommendations founded on sound research are necessary to secure EV charging infrastructure. This project provided the power, security, and automotive industry with a strong technical basis for securing this infrastructure by developing threat models, determining technology gaps, and identifying or developing effective countermeasures. Specifically, the team created a cybersecurity threat model and performed a technical risk assessment of EVSE assets across multiple manufacturers and vendors, so that automotive, charging, and utility stakeholders could better protect customers, vehicles, and power systems in the face of new cyber threats.

More Details

Resilient El Rito, Microgrif System Laboratory (Village of El Rito) (Final CTAP Report)

Quiroz, Jimmy E.

Sandia provided technical assistance to Kit Carson Electric Cooperative (KCEC) to assess the technical merits of a proposed community resilience microgrid project in the Village of El Rito, New Mexico (NM). The project includes a proposed community resilience microgrid in the Village of El Rito, NM, around the campus of Northern New Mexico College (NNMC). A conceptual microgrid analysis plan was performed, considering a campus and community-wide approach. The analysis results provided conceptual microgrid configurations, optimized according to the performance metrics defined. The campus microgrid was studied independently and many conceptual microgrid solutions were provided that met the performance requirements. Considering the existing 1.5 MW PV system on campus far exceeds the simulated campus load peak and energy demand, a small battery installation was deemed sufficient to support the campus microgrid goals. Following the analysis and consultation, it was determined that the core Resilient El Rito team will need to further investigate the results for additional economic and environmental considerations to continue toward the best approach for their goals and needs.

More Details

Modeling Framework for Bulk Electric Grid Impacts from HEMP E1 and E3 Effects (Tasks 3.1 Final Report)

Pierre, Brian J.; Krofcheck, Daniel J.; Hoffman, Matthew; Guttromson, Ross; Schiek, Richard; Quiroz, Jimmy E.

This report presents a framework to evaluate the impact of a high-altitude electromagnetic pulse (HEMP) event on a bulk electric power grid. This report limits itself to modeling the impact of EMP E1 and E3 components. The co-simulation of E1 and E3 is presented in detail, and the focus of the paper is on the framework rather than actual results. This approach is highly conservative as E1 and E3 are not maximized with the same event characteristics and may only slightly overlap. The actual results shown in this report are based on a synthetic grid with synthetic data and a limited exemplary EMP model. The framework presented can be leveraged and used to analyze the impact of other threat scenarios, both manmade and natural disasters. This report d escribes a Monte-Carlo based methodology to probabilistically quantify the transient response of the power grid to a HEMP event. The approach uses multiple fundamental steps to characterize the system response to HEMP events, focused on the E1 and E3 components of the event. 1) Obtain component failure data related to HEMP events testing of components and creating component failure models. Use the component failure model to create component failure conditional probability density function (PDF) that is a function of the HEMP induced terminal voltage. 2) Model HEMP scenarios and calculate the E1 coupled voltage profiles seen by all system components. Model the same HEMP scenarios and calculate the transformer reactive power consumption profiles due to E3. 3) Sample each component failure PDF to determine which grid components will fail, due to the E1 voltage spike, for each scenario. 4) Perform dynamic simulations that incorporate the predicted component failures from E1 and reactive power consumption at each transformer affected by E3. These simulations allow for secondary transients to affect the relays/protection remaining in service which can lead to cascading outages. 5) Identify the locations and amount of load lost for each scenario through grid dynamic simulation. This can be an indication of the immediate grid impacts from a HEMP event. In addition, perform more detailed analysis to determine critical nodes and system trends. 6) To help realize the longer-term impacts, a security constrained alternating current optimal power flow (ACOPF) is run to maximize critical load served. This report describes a modeling framework to assess the systemic grid impacts due to a HEMP event. This stochastic simulation framework generates a large amount of data for each Monte Carlo replication, including HEMP location and characteristics, relay and component failures, E3 GIC profiles, cascading dynamics including voltage and frequency over time, and final system state. This data can then be analyzed to identify trends, e.g., unique system behavior modes or critical components whose failure is more likely to cause serious systemic effects. The proposed analysis process is demonstrated on a representative system. In order to draw realistic conclusions of the impact of a HEMP event on the grid, a significant amount of work remains with respect to modeling the impact on various grid components.

More Details

Hazard Analysis of Firefighter Interactions with Photovoltaic Arrays

2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, WCPEC 2018 - A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC

Flicker, Jack D.; Lavrova, Olga; Quiroz, Jimmy E.; Zgonena, Tim; Jiang, Hai; Whitfield, Kent; Boyce, Kenneth; Courtney, Paul; Carr, John; Brazis, Paul

To determine risk of an electric shock to firefighter personnel due to contact with live parts of a damaged PV system, simulated PV arrays were constructed with multiple 'modules' connected to a central inverter. The results of this analysis demonstrate that ungrounded arrays are significantly safer than grounded arrays for reasonable module isolation resistances. Ungrounded arrays provide current hazards to personnel up to three orders of magnitude smaller than for a grounded array counterpart. While the size of the array does not affect the current hazard in grounded arrays for body resistances above 100,Ω, in ungrounded arrays, increased array size yields increased current hazards- considering that the overall fault current level is still significantly smaller than for grounded arrays. In both grounded and ungrounded arrays, the current hazard has a direct correlation to array voltage. Since the level of fault current in a grounded array can be significant, this work shows that the non- linearity of the array IV curve must be taken into account for body resistances below 600 Ω and array voltages above 1000V for accurate fault current determination. Although module and array isolation resistance is not a factor that modulates fault current in a grounded array, this resistance, Riso, has a significant effect on current hazard to the firefighter for ungrounded arrays.

More Details

A Conservative Approach to Defining Photovoltaic System Hazards to Firefighters

Quiroz, Jimmy E.; Flicker, Jack D.; Lavrova, Olga; Zgonena, Timothy; Jiang, Hai; Whitfield, Kent

Sandia National Laboratories performed analysis to develop conservative hazard guidelines regarding firefighters working near photovoltaic (PV) arrays. Assuming implementation of NFPA 70 system shutdown requirements, the analysis focused on DC hazards only. Several different PV variables were considered, including system grounding and DC voltage classes. The hazard scenarios considered the contact conditions, current paths through the body, and PPE. Guidelines for the hazard definitions for men and women were based on the IEC TS 60479-1 guidelines. The importance of PPE was illustrated in the results.

More Details

DC Microgrid Protection: Review and Challenges

Augustine, Sijo; Quiroz, Jimmy E.; Reno, Matthew J.; Brahma, Sukumar

Successful system protection is critical to the feasibility of the DC microgrid system. This work focused on identifying the types of faults, challenges of protection, different fault detection schemes, and devices pertinent to DC microgrid systems. One of the main challenges of DC microgrid protection is the lack of guidelines and standards. The various parameters that improve the design of protection schemes were identified and discussed. Due to the absence of physical inertia, the resistive nature of the line impedance affects fault clearing time and system stability during faults. Therefore, the effectiveness of protection coordination systems with communication were also explored. A detailed literature review was done to identify possible grounding schemes and protection devices needed to ensure seamless power flow of grid-connected DC microgrids. Ultimately, it was identified that more analyses and experimentation are needed to develop optimized fault detection schemes with reduced fault clearing time.

More Details

Communication requirements for hierarchical control of volt-VAr function for steady-state voltage

2017 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference, ISGT 2017

Quiroz, Jimmy E.; Reno, Matthew J.; Lavrova, Olga; Byrne, Raymond H.

A hierarchical control algorithm was developed to utilize photovoltaic system advanced inverter volt-VAr functions to provide distribution system voltage regulation and to mitigate 10-minute average voltages outside of ANSI Range A (0.95-1.05 pu). As with any hierarchical control strategy, the success of the control requires a sufficiently fast and reliable communication infrastructure. The communication requirements for voltage regulation were tested by varying the interval at which the controller monitors and dispatches commands and evaluating the effectiveness to mitigate distribution system over-voltages. The control strategy was demonstrated to perform well for communication intervals equal to the 10-minute ANSI metric definition or faster. The communication reliability impacted the controller performance at levels of 99% and below, depending on the communication interval, where an 8-minute communication interval could be unsuccessful with an 80% reliability. The communication delay, up to 20 seconds, was too small to have an impact on the effectiveness of the communication-based hierarchical voltage control.

More Details

Cyber Security Gap Analysis for Critical Energy Systems (CSGACES)

Stamp, Jason E.; Quiroz, Jimmy E.; Ellis, Abraham

This study describes a cyber security research & development (R&D) gap analysis and research plan to address cyber security for industrial control system (ICS) supporting critical energy systems (CES). The Sandia National Laboratories (SNL) team addressed a long-term perspective for the R&D planning and gap analysis. Investment will posture CES for sustained and resilient energy operations well into the future.

More Details

Small signal stability of the western North American power grid with high penetrations of renewable generation

2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017

Byrne, Raymond H.; Concepcion, Ricky; Neely, Jason C.; Wilches-Bernal, Felipe; Elliott, Ryan T.; Lavrova, Olga; Quiroz, Jimmy E.

The goal of this effort was to assess the effect of high penetration solar deployment on the small signal stability of the western North American power system (wNAPS). Small signal stability is concerned with the system response to small disturbances, where the system is operating in a linear region. The study area consisted of the region governed by the Western Electricity Coordinating Council (WECC). General Electric's Positive Sequence Load Flow software (PSLF®) was employed to simulate the power system. A resistive brake insertion was employed to stimulate the system. The data was then analyzed in MATLAB1® using subspace methods (Eigensystem Realization Algorithm). Two different WECC base cases were analyzed: 2022 light spring and 2016 heavy summer. Each base case was also modified to increase the percentage of wind and solar. In order to keep power flows the same, the modified cases replaced conventional generation with renewable generation. The replacements were performed on a regional basis so that solar and wind were placed in suitable locations. The main finding was that increased renewable penetration increases the frequency of inter-area modes, with minimal impact on damping. The slight increase in mode frequency was consistent with the loss of inertia as conventional generation is replaced with wind and solar. Then, distributed control of renewable generation was assessed as a potential mitigation, along with an analysis of the impact of communications latency on the distributed control algorithms.

More Details

PV ramp rate smoothing using energy storage to mitigate increased voltage regulator tapping

2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017

Reno, Matthew J.; Lave, Matt; Quiroz, Jimmy E.; Broderick, Robert J.

A control algorithm is designed to smooth the variability of PV power output using distributed batteries. The tradeoff between smoothing and battery size is shown. It is also demonstrated that large numbers of highly distributed current, voltage, and irradiance sensors can be utilized to control the distributed storage in a more optimal manner. It is also demonstrated that centralized energy storage control for PV ramp rate smoothing requires very fast communication, typically less than a 15-second update rate. Finally, advanced inverter dynamic reactive current is shown to provide voltage variability smoothing, hence reducing the number of voltage regulator tap changes without energy storage.

More Details

PV ramp rate smoothing using energy storage to mitigate increased voltage regulator tapping

2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017

Reno, Matthew J.; Lave, Matt; Quiroz, Jimmy E.; Broderick, Robert J.

A control algorithm is designed to smooth the variability of PV power output using distributed batteries. The tradeoff between smoothing and battery size is shown. It is also demonstrated that large numbers of highly distributed current, voltage, and irradiance sensors can be utilized to control the distributed storage in a more optimal manner. It is also demonstrated that centralized energy storage control for PV ramp rate smoothing requires very fast communication, typically less than a 15-second update rate. Finally, advanced inverter dynamic reactive current is shown to provide voltage variability smoothing, hence reducing the number of voltage regulator tap changes without energy storage.

More Details

Methods to determine recommended feeder-wide advanced inverter settings for improving distribution system performance

2017 IEEE 44th Photovoltaic Specialist Conference Pvsc 2017

Rylander, Matthew; Reno, Matthew J.; Quiroz, Jimmy E.; Ding, Fei; Li, Huijuan; Broderick, Robert J.; Mather, Barry; Smith, Jeff

More Details

Methods to determine recommended feeder-wide advanced inverter settings for improving distribution system performance

2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017

Rylander, Matthew; Reno, Matthew J.; Quiroz, Jimmy E.; Ding, Fei; Li, Huijuan; Broderick, Robert J.; Mather, Barry; Smith, Jeff

More Details

Evaluation of communication requirements for voltage regulation control with advanced inverters

NAPS 2016 - 48th North American Power Symposium, Proceedings

Reno, Matthew J.; Quiroz, Jimmy E.; Lavrova, Olga; Byrne, Raymond H.

A central control algorithm was developed to utilize photovoltaic system advanced inverter functions, specifically fixed power factor and constant reactive power, to provide distribution system voltage regulation and to mitigate voltage regulator tap operations by using voltage measurements at the regulator. As with any centralized control strategy, the capabilities of the control require a reliable and fast communication infrastructure. These communication requirements were evaluated by varying the interval at which the controller sends dispatch commands and evaluating the effectiveness to mitigate tap operations. The control strategy was demonstrated to perform well for communication intervals faster than the delay on the voltage regulator (30 seconds). The communication reliability, latency, and bandwidth requirements were also evaluated.

More Details

PV-induced low voltage and mitigation options

2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015

Quiroz, Jimmy E.; Reno, Matthew J.; Broderick, Robert J.

With increasingly high penetrations of PV on distribution systems, there can be many benefits and impacts to the standard operation of the grid. This paper focuses on voltages below the allowable range caused by the installation of PV on distribution systems with line-drop compensation enabled voltage regulation controls. This paper demonstrates how this type of under-voltage issue has the potential to limit the hosting capacity of PV on a feeder and have possible consequences to other feeders served off a common regulated bus. Some examples of mitigation strategies are presented, along with the shortcomings of each. An example of advanced inverter functionality to mitigate overvoltage is shown, while also illustrating the ineffectiveness of inverter voltage control as a mitigation of under-voltage.

More Details

In-situ module-level I-V tracers for novel PV monitoring

2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015

Quiroz, Jimmy E.; Stein, Joshua; Carmignani, Craig K.; Gillispie, Kellen

The current state of PV module monitoring is in need of improvements to better detect, diagnose, and locate abnormal module conditions. Detection of common abnormalities is difficult with current methods. The value of optimal system operation is a quantifiable benefit, and cost-effective monitoring systems will continue to evolve for this reason. Sandia National Laboratories performed a practicality and monitoring investigation on a testbed of 15 in-situ module-level I-V curve tracers. Shading and series resistance tests were performed and examples of using I-V curve interpretation and the Loss Factors Model parameters for detection of each is presented.

More Details

Alternatives to the 15% Rule

Broderick, Robert J.; Rylander, Matthew; Reno, Matthew J.; Munoz-Ramos, Karina; Quiroz, Jimmy E.; Smith, Jeff; Rogers, Lindsey; Dugan, Roger; Mather, Barry; Coddington, Michael; Gotseff, Peter; Ding, Fei

The third solicitation of the California Solar Initiative (CSI) Research, Development, Demonstration and Deployment (RD&D) Program established by the California Public Utility Commission (CPUC) is supporting the Electric Power Research Institute (EPRI), National Renewable Energy Laboratory (NREL), and Sandia National Laboratories (SNL) with collaboration from Pacific Gas and Electric (PG&E), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E), in research to improve the Utility Application Review and Approval process for interconnecting distributed energy resources to the distribution system. Currently this process is the most time - consuming of any step on the path to generating power on the distribution system. This CSI RD&D solicitation three project has completed the tasks of collecting data from the three utilities, clustering feeder characteristic data to attain representative feeders, detailed modeling of 16 representative feeders, analysis of PV impacts to those feeders, refinement of current screening processes, and validation of those suggested refinements. In this report each task is summarized to produce a final summary of all components of the overall project.

More Details

Alternatives to the 15% Rule: Modeling and Hosting Capacity Analysis of 16 Feeders

Smith, Jeff; Rylander, Matthew; Reno, Matthew J.; Broderick, Robert J.; Mather, Barry; Quiroz, Jimmy E.; Munoz-Ramos, Karina

This project is part of the third solicitation of the California Solar Initiative (CSI3) Research, Development, Demonstration, and Deployment Program created by the California Public Utilities Commission (CPUC) in 2006 to support solar research in California. The program focuses on research to improve the utility application review and approval process for interconnecting distributed energy resources such as solar to the distribution system. The CSI3 program is supporting EPRI, National Renewable Energy Laboratory (NREL), and Sandia National Laboratories (SNL) in their collaboration on the process with Pacific Gas and Electric (PG&E), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E). At present, the application review and approval process is the most time-consuming of any step on the path to generating power for delivery through the distribution system.

More Details

Analysis of 100 SGIP Interconnection Studies

Sena, Santiago S.; Quiroz, Jimmy E.; Broderick, Robert J.

The purpose of the report is to describe the findings from the analysis of 100 Small Generation Interconnection Procedure (SGIP) studies and describe the methodology used to develop the database. The database was used to identify the most likely impacts and mitigation costs associated with PV system interconnections. A total of 100 SGIP reports performed by 3 utilities and one regional transmission operator (RTO) were analyzed. Each record within the database represents an itemized SGIP report and includes information about the generation facility, interconnection topology, electrical power system characteristics, identified adverse system impacts, mitigation options, and costs associated with interconnection the generation facility.

More Details

Photovoltaic Microinverter Testbed for Multiple Device Interoperability

Quiroz, Jimmy E.; Gonzalez, Sigifredo; King, Bruce H.; Riley, Daniel; Johnson, Jay; Stein, Joshua

IEEE Standard 1547-2003 conformance of several interconnected microinverters was performed by Sandia National Laboratories (SNL) to determine if there were emergent adverse behaviors of co-located aggregated distributed energy resources. Experiments demonstrated the certification tests could be expanded for multi-manufacturer microinverter interoperability. Evaluations determined the microinverters' response to abnormal conditions in voltage and frequency, interruption in grid service, and cumulative power quality. No issues were identified to be caused by the interconnection of multiple devices.

More Details

High-resolution residential feeder load characterization and variability modelling

2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014

Pohl, Andrew; Johnson, Jay; Sena, Santiago; Broderick, Robert J.; Quiroz, Jimmy E.

Data from of a highly instrumented residential feeder in Ota City, Japan was used to determine 1 second load variability for the aggregation of 50, 100, 250, and 500 homes. The load variability is categorized by binning the data into seasons, weekdays vs. weekends, and time of day to create artificial sub-15-minute variability estimates for modeling dynamic load profiles. An autoregressive, AR(1) function along with a high pass filter was used to simulate the high resolution variability. The simulated data were validated against the original 1-second measured data.

More Details

Time series power flow analysis for distribution connected PV generation

Ellis, Abraham; Quiroz, Jimmy E.; Reno, Matthew J.; Broderick, Robert J.

Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating potential PV impacts.

More Details

Initial operating experience of the 12-MW La Ola photovoltaic system

Johnson, Jay; Schenkman, Benjamin L.; Ellis, Abraham; Quiroz, Jimmy E.

The 1.2-MW La Ola photovoltaic (PV) power plant in Lanai, Hawaii, has been in operation since December 2009. The host system is a small island microgrid with peak load of 5 MW. Simulations conducted as part of the interconnection study concluded that unmitigated PV output ramps had the potential to negatively affect system frequency. Based on that study, the PV system was initially allowed to operate with output power limited to 50% of nameplate to reduce the potential for frequency instability due to PV variability. Based on the analysis of historical voltage, frequency, and power output data at 50% output level, the PV system has not significantly affected grid performance. However, it should be noted that the impact of PV variability on active and reactive power output of the nearby diesel generators was not evaluated. In summer 2011, an energy storage system was installed to counteract high ramp rates and allow the PV system to operate at rated output. The energy storage system was not fully operational at the time this report was written; therefore, analysis results do not address system performance with the battery system in place.

More Details
54 Results
54 Results