Versatile two channel optical densitometer
Abstract not provided.
Abstract not provided.
Applied Optics
We present the characterization of several atmospheric aerosol analogs in a tabletop chamber and an analysis of how the concentration of NaCl present in these aerosols influences their bulk optical properties. Atmospheric aerosols (e.g., fog and haze) degrade optical signal via light–aerosol interactions causing scattering and absorption, which can be described by Mie theory. This attenuation is a function of the size distribution and number concentration of droplets in the light path. These properties are influenced by ambient conditions and the droplet’s composition, as described by Köhler theory. It is therefore possible to tune the wavelength-dependent bulk optical properties of an aerosol by controlling droplet composition. We present experimentation wherein we generated multiple microphysically and optically distinct atmospheric aerosol analogs using salt water solutions with varying concentrations of NaCl. The results demonstrate that changing the NaCl concentration has a clear and predictable impact on the microphysical and optical properties of the aerosol
Abstract not provided.
Applied Optics
Fogs, low lying clouds, and other highly scattering environments pose a challenge for many commercial and national security sensing systems. Current autonomous systems rely on optical sensors for navigation whose performance is degraded by highly scattering environments. In our previous simulation work, we have shown that polarized light can penetrate through a scattering environment such as fog. We have demonstrated that circularly polarized light maintains its initial polarization state better than linearly polarized light, even through large numbers of scattering events and thus ranges. This has recently been experimentally verified by other researchers. In this work, we present the design, construction, and testing of active polarization imagers at short-wave infrared and visible wavelengths. We explore multiple polarimetric configurations for the imagers, focusing on linear and circular polarization states. The polarized imagers were tested at the Sandia National Laboratories Fog Chamber under realistic fog conditions. We show that active circular polarization imagers can increase range and contrast in fog better than linear polarization imagers. We show that when imaging typical road sign and safety retro-reflective films, circularly polarized imaging has enhanced contrast throughout most fog densities/ranges compared to linearly polarized imaging and can penetrate over 15 to 25 m into the fog beyond the range limit of linearly polarized imaging, with a strong dependence on the interaction of the polarization state with the target materials.
Proceedings of SPIE - The International Society for Optical Engineering
Event-based sensors are a novel sensing technology which capture the dynamics of a scene via pixel-level change detection. This technology operates with high speed (>10 kHz), low latency (10 µs), low power consumption (<1 W), and high dynamic range (120 dB). Compared to conventional, frame-based architectures that consistently report data for each pixel at a given frame rate, event-based sensor pixels only report data if a change in pixel intensity occurred. This affords the possibility of dramatically reducing the data reported in bandwidth-limited environments (e.g., remote sensing) and thus, the data needed to be processed while still recovering significant events. Degraded visual environments, such as those generated by fog, often hinder situational awareness by decreasing optical resolution and transmission range via random scattering of light. To respond to this challenge, we present the deployment of an event-based sensor in a controlled, experimentally generated, well-characterized degraded visual environment (a fog analogue), for detection of a modulated signal and comparison of data collected from an event-based sensor and from a traditional framing sensor.
Abstract not provided.
Proceedings of the AIAA
Proceedings of the AIAA
Abstract not provided.
Abstract not provided.
Abstract not provided.
Natural and man-made degraded visual environments pose major threats to national security. The random scattering and absorption of light by tiny particles suspended in the air reduces situational awareness and causes unacceptable down-time for critical systems and operations. To improve the situation, we have developed several approaches to interpret the information contained within scattered light to enhance sensing and imaging in scattering media. These approaches were tested at the Sandia National Laboratory Fog Chamber facility and with tabletop fog chambers. Computationally efficient light transport models were developed and leveraged for computational sensing. The models are based on a weak angular dependence approximation to the Boltzmann or radiative transfer equation that appears to be applicable in both the moderate and highly scattering regimes. After the new model was experimentally validated, statistical approaches for detection, localization, and imaging of objects hidden in fog were developed and demonstrated. A binary hypothesis test and the Neyman-Pearson lemma provided the highest theoretically possible probability of detection for a specified false alarm rate and signal-to-noise ratio. Maximum likelihood estimation allowed estimation of the fog optical properties as well as the position, size, and reflection coefficient of an object in fog. A computational dehazing approach was implemented to reduce the effects of scatter on images, making object features more readily discernible. We have developed, characterized, and deployed a new Tabletop Fog Chamber capable of repeatably generating multiple unique fog-analogues for optical testing in degraded visual environments. We characterized this chamber using both optical and microphysical techniques. In doing so we have explored the ability of droplet nucleation theory to describe the aerosols generated within the chamber, as well as Mie scattering theory to describe the attenuation of light by said aerosols, and correlated the aerosol microphysics to optical properties such as transmission and meteorological optical range (MOR). This chamber has proved highly valuable and has supported multiple efforts inclusive to and exclusive of this LDRD project to test optics in degraded visual environments. Circularly polarized light has been found to maintain its polarization state better than linearly polarized light when propagating through fog. This was demonstrated experimentally in both the visible and short-wave infrared (SWIR) by imaging targets made of different commercially available retroreflective films. It was found that active circularly polarized imaging can increase contrast and range compared to linearly polarized imaging. We have completed an initial investigation of the capability for machine learning methods to reduce the effects of light scattering when imaging through fog. Previously acquired experimental long-wave images were used to train an autoencoder denoising architecture. Overfitting was found to be a problem because of lack of variability in the object type in this data set. The lessons learned were used to collect a well labeled dataset with much more variability using the Tabletop Fog Chamber that will be available for future studies. We have developed several new sensing methods using speckle intensity correlations. First, the ability to image moving objects in fog was shown, establishing that our unique speckle imaging method can be implemented in dynamic scattering media. Second, the speckle decorrelation over time was found to be sensitive to fog composition, implying extensions to fog characterization. Third, the ability to distinguish macroscopically identical objects on a far-subwavelength scale was demonstrated, suggesting numerous applications ranging from nanoscale defect detection to security. Fourth, we have shown the capability to simultaneously image and localize hidden objects, allowing the speckle imaging method to be effective without prior object positional information. Finally, an interferometric effect was presented that illustrates a new approach for analyzing speckle intensity correlations that may lead to more effective ways to localize and image moving objects. All of these results represent significant developments that challenge the limits of the application of speckle imaging and open important application spaces. A theory was developed and simulations were performed to assess the potential transverse resolution benefit of relative motion in structured illumination for radar systems. Results for a simplified radar system model indicate that significant resolution benefits are possible using data from scanning a structured beam over the target, with the use of appropriate signal processing.
Optics Letters
A computationally efficient radiative transport model is presented that predicts a camera measurement and accounts for the light reflected and blocked by an object in a scattering medium. The model is in good agreement with experimental data acquired at the Sandia National Laboratory Fog Chamber Facility (SNLFC). The model is applicable in computational imaging to detect, localize, and image objects hidden in scattering media. Here, a statistical approach was implemented to study object detection limits in fog.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
2022 Conference on Lasers and Electro-Optics, CLEO 2022 - Proceedings
We present a computationally efficient a pproximate solution to the time-resolved radiative transfer equation that is applicable in weakly and diffuse scattering heterogeneous media. Applications will be considered, including computational sensing in fog and tissue.
Optics InfoBase Conference Papers
We present optical metrology at the Sandia fog chamber facility. Repeatable and well characterized fogs are generated under different atmospheric conditions and applied for light transport model validation and computational sensing development.
Abstract not provided.
Microporous and Mesoporous Materials
Zirconium-based metal-organic frameworks, including UiO-66 and related frameworks, have become the focus of considerable research in the area of chemical warfare agent (CWA) decontamination. However, little work has been reported exploring these metal-organic frameworks (MOFs) for CWA sensing applications. For many sensing approaches, the growth of high-quality thin films of the active material is required, and thin film growth methods must be compatible with complex device architectures. Several approaches to synthesize thin films of UiO-66 have been described but many of these existing methods are complex or time consuming. We describe the development of a simple and rapid microwave assisted synthesis of oriented UiO-66 thin films on unmodified silicon (Si) and gold (Au) substrates. Thin films of UiO-66 and UiO-66-NH2 can be grown in as little as 2 min on gold substrates and 30 min on Si substrates. The film morphology and orientation are characterized and the effects of reaction time and temperature on thin film growth on Au are investigated. Both reaction time and temperature impact the overgrowth of protruding discrete crystallites in the thin film layer but, surprisingly, no strong correlation is observed between film thickness and reaction time or temperature. We also briefly describe the synthesis of Zr/Ce solid solution thin films of UiO-66 on Au and report the first synthesis of a solid solution thin film MOF. Finally, we demonstrate the utility of the microwave method for the facile functionalization of two sensor architectures, plasmonic nanohole arrays and microresonators, with UiO-66 thin films.
Abstract not provided.
Optics Express
Random scattering and absorption of light by tiny particles in aerosols, like fog, reduce situational awareness and cause unacceptable down-time for critical systems or operations. Computationally efficient light transport models are desired for computational imaging to improve remote sensing capabilities in degraded optical environments. To this end, we have developed a model based on a weak angular dependence approximation to the Boltzmann or radiative transfer equation that appears to be applicable in both the moderate and highly scattering regimes, thereby covering the applicability domain of both the small angle and diffusion approximations. An analytic solution was derived and validated using experimental data acquired at the Sandia National Laboratory Fog Chamber facility. The evolution of the fog particle density and size distribution were measured and used to determine macroscopic absorption and scattering properties using Mie theory. A three-band (0.532, 1.55, and 9.68 μm) transmissometer with lock-in amplifiers enabled changes in fog density of over an order of magnitude to be measured due to the increased transmission at higher wavelengths, covering both the moderate and highly scattering regimes. The meteorological optical range parameter is shown to be about 0.6 times the transport mean free path length, suggesting an improved physical interpretation of this parameter.
Proceedings of SPIE - The International Society for Optical Engineering