Publications

Results 326–343 of 343

Search results

Jump to search filters

Final Report on LDRD Project: Development of Quantum Tunneling Transistors for Practical Circuit Applications

Simmons, J.A.; Lyo, S.K.; Baca, Wes E.; Reno, J.L.; Lilly, Michael L.; Wendt, J.R.; Wanke, Michael W.

The goal of this LDRD was to engineer further improvements in a novel electron tunneling device, the double electron layer tunneling transistor (DELTT). The DELTT is a three terminal quantum device, which does not require lateral depletion or lateral confinement, but rather is entirely planar in configuration. The DELTT's operation is based on 2D-2D tunneling between two parallel 2D electron layers in a semiconductor double quantum well heterostructure. The only critical dimensions reside in the growth direction, thus taking full advantage of the single atomic layer resolution of existing semiconductor growth techniques such as molecular beam epitaxy. Despite these advances, the original DELTT design suffered from a number of performance short comings that would need to be overcome for practical applications. These included (i)a peak voltage too low ({approx}20 mV) to interface with conventional electronics and to be robust against environmental noise, (ii) a low peak current density, (iii) a relatively weak dependence of the peak voltage on applied gate voltage, and (iv) an operating temperature that, while fairly high, remained below room temperature. In this LDRD we designed and demonstrated an advanced resonant tunneling transistor that incorporates structural elements both of the DELTT and of conventional double barrier resonant tunneling diodes (RTDs). Specifically, the device is similar to the DELTT in that it is based on 2D-2D tunneling and is controlled by a surface gate, yet is also similar to the RTD in that it has a double barrier structure and a third collector region. Indeed, the device may be thought of either as an RTD with a gate-controlled, fully 2D emitter, or alternatively, as a ''3-layer DELTT,'' the name we have chosen for the device. This new resonant tunneling transistor retains the original DELTT advantages of a planar geometry and sharp 2D-2D tunneling characteristics, yet also overcomes the performance shortcomings of the original DELTT design. In particular, it exhibits the high peak voltages and current densities associated with conventional RTDs, allows sensitive control of the peak voltage by the control gate, and operates nearly at room temperature. Finally, we note under this LDRD we also investigated the use of three layer DELTT structures as long wavelength (Terahertz) detectors using photon-assisted tunneling. We have recently observed a narrowband (resonant) tunable photoresponse in related structures consisting of grating-gated double quantum wells, and report on that work here as well.

More Details

Double Barrier Resonant Tunneling Transistor with a Fully Two Dimensional Emitter

Science Magazine

Simmons, J.A.; Reno, J.L.; Baca, Wes E.; Blount, Mark A.; Hietala, Vincent M.; Jones, E.D.

A novel planar resonant tunneling transistor is demonstrated. The growth structure is similar to that of a double-barrier resonant tunneling diode (RTD), except for a fully two-dimensional (2D) emitter formed by a quantum well. Current is fed laterally into the emitter, and the 2D--2D resonant tunneling current is controlled by a surface gate. This unique device structure achieves figures-of-merit, i.e. peak current densities and peak voltages, approaching that of state-of-the-art RTDs. Most importantly, sensitive control of the peak current and voltage is achieved by gating of the emitter quantum well subband energy. This quantum tunneling transistor shows exceptional promise for ultra-high speed and multifunctional operation at room temperature.

More Details

Magnetoconductance of Independently Tunable Tunnel-Coupled Double Quantum Wires

Physica E

Blount, Mark A.; Simmons, J.A.; Lyo, S.K.; Wendt, J.R.; Reno, J.L.

The authors report on their recent experimental studies of vertically-coupled quantum point contacts subject to in-plane magnetic fields. Using a novel flip-chip technique, mutually aligned split gates on both sides of a sub micron thick double quantum well heterostructure define a closely-coupled pair of ballistic one-dimensional (1D) constrictions. They observe quantized conductance steps due to each quantum well and demonstrate independent control of each ID constriction width. In addition, a novel magnetoconductance feature at {approximately}6 T is observed when a magnetic field is applied perpendicular to both the current and growth directions. This conductance dip is observed only when 1D subbands are populated in both the top and bottom constrictions. This data is consistent with a counting model whereby the number of subbands crossing the Fermi level changes with field due to the formation of an anticrossing in each pair of 1D subbands.

More Details

Effect of the Nuclear Hyperfine Field on the 2D Electron Conductivity in the Quantum Hall Regime

JETP Letters

Simmons, J.A.; Reno, J.L.

The effect of the nuclear hyperfine interaction on the dc conductivity of 2D electrons under quantum Hall effect conditions at filling factor v= 1 is observed for the first time. The local hyperfine field enhanced by dynamic nuclear polarization is monitored via the Overhauser shift of the 2D conduction electron spin resonance in AlGaAs/GaAs multiquantum-well samples. The experimentally observed change in the dc conductivity resulting from dynamic nuclear polarization is in agreement with a thermal activation model incorporating the Zeeman energy change due to the hyperfine interaction. The relaxation decay time of the dc conductivity is, within experimental error, the same as the relaxation time of the nuclear spin polarization determined from the Overhauser shift. These findings unequivocally establish the nuclear spin origins of the observed conductivity change.

More Details

A new type of magnetoresistance oscillations: Interaction of a two-dimensional electron gas with leaky interface phonons

Physical Review Letters

Simmons, J.A.; Reno, J.L.

The authors report a new type of oscillations in magnetoresistance observed in high-mobility two-dimensional electron gas (2DEG), in GaAs-AIGaAs heterostructures. Being periodic in 1/B these oscillations appear in weak magnetic field (B < 0.3 T) and only in a narrow temperature range (3 K < T < 7 K). Remarkably, these oscillations can be understood in terms of magneto-phonon resonance originating from the interaction of 2DEG and leaky interface-acoustic phonon modes. The existence of such modes on the GaAs:AIGaAs interface is demonstrated theoretically and their velocities are calculated. It is shown that the electron-phonon scattering matrix element exhibits a peak for the phonons carrying momentum q = 2k{sub F} (k{sub F} is the Fermi wave-vector of 2DEG).

More Details

Optical properties of spontaneous lateral composition modulations in AlAs/InAs short-period superlattices

Applied Physics Letters

Jones, E.D.; Reno, J.L.; Lee, Stephen R.; Follstaedt, D.M.

The effect of lateral composition modulation, spontaneously generated during the epitaxial growth of a AlAs/InAs short-period superlattice, on the electronic band structure is investigated using photo-transmission and photoluminescence spectroscopy. Compared with uniform layers of similar average composition, the presence of the composition modulation considerably reduces the band gap energy and produces strongly polarized emission and absorption spectra. The authors demonstrate that the dominant polarization can selectively be aligned along the [{bar 1}10] or [010] crystallographic directions. In compressively strained samples, the use of (001) InP substrates slightly miscut toward [111]A or [101] resulted in modulation directions along [110] or [100], respectively, and dominant polarizations along a direction orthogonal to the respective composition modulation. Band gap reduction as high as 350 meV and 310 meV are obtained for samples with composition modulation along [110] and [100], respectively. Polarization ratios up to 26 are observed in transmission spectra.

More Details

Effect of surface steps on the microstructure of lateral composition modulation

Applied Physics Letters

Follstaedt, D.M.; Reno, J.L.; Jones, E.D.; Lee, Stephen R.

Growth of InAs/AlAs short-period superlattices on appropriately miscut (001) InP substrates is shown to alter the microstructure of composition modulation from a 2D organization of short compositionally enriched wires to a single dominant modulation direction and wire lengths up to {approximately}1 {micro}m. The effects of miscut are interpreted in terms of surface step orientation and character. The material is strongly modulated and exhibits intense optical emission. The 1D modulations appear potentially useful for new devices that take advantage of the preferred direction formed in the growth plane.

More Details

Crossing behavior of the singlet and triplet State of the negatively charged magneto-exciton in a GaAs/AlGaAs quantum well

Physical Review B

Simmons, J.A.; Reno, J.L.

Polarized magneto-photoluminescence (MPL) measurements on a high mobility {delta}-doped GaAs/AlGaAs single quantum well from 0--60 T at temperatures between 0.37--2.1 K are reported. In addition to the neutral heavy hole magneto-exciton (X{sup 0}), the singlet (X {sub s}{sup {minus}}) and triplet (X {sub t}{sup {minus}}) states of the negatively charged magneto-exciton are observed in both polarizations. The energy dispersive and time-resolved MPL data suggest that their development is fundamentally related to the formation of the neutral magneto-exciton. At a magnetic field of 40 T the singlet and the triplet states cross as a result of the role played by the higher Landau levels and higher energy subbands in their energetic evolution, confirming theoretical predictions. The authors also observed the formation of two higher energy peaks. One of them is completely right circularly polarized and its appearance can be considered a result of the electron-hole exchange interaction enhancement with an associated electron g-factor of 3.7 times the bulk value. The other peak completely dominates the MPL spectrum at fields around 30 T. Its behavior with magnetic field and temperature indicates that it may be related to previous anomalies observed in the integer and fractional quantum Hall regimes.

More Details

The nature and origin of lateral composition modulations in short-period strained-layer superlattices

Jones, E.D.; Follstaedt, D.M.; Lee, Stephen R.; Reno, J.L.

The nature and origin of lateral composition modulations in (AlAs){sub m}(InAs){sub n} SPSs grown by MBE on InP substrates have been investigated by XRD, AFM, and TEM. Strong modulations were observed for growth temperatures between {approx} 540 and 560 C. The maximum strength of modulations was found for SPS samples with InAs mole fraction x (=n/(n+m)) close to {approx} 0.50 and when n {approx} m {approx} 2. The modulations were suppressed at both high and low values of x. For x >0.52 (global compression) the modulations were along the <100> directions in the (001) growth plane. For x < 0.52 (global tension) the modulations were along the two <310> directions rotated {approx} {+-} 27{degree} from [110] in the growth plane. The remarkably constant wavelength of the modulations, between {approx} 20--30 nm, and the different modulation directions observed, suggest that the origin of the modulations is due to surface roughening associated with the high misfit between the individual SPS layers and the InP substrate. Highly uniform unidirectional modulations have been grown, by control of the InAs mole fraction and growth on suitably offcut substrates, which show great promise for application in device structures.

More Details

Reciprocal-space and real-space analyses of compositional modulation in InAs/AlAs short-period superlattices

Follstaedt, D.M.; Lee, Stephen R.; Reno, J.L.; Jones, E.D.

The microstructure of lateral composition modulation in InAs/AlAs superlattices grown by MBE on InP is examined. The use of x-ray diffraction, TEM, AFM, and STEM to characterize the modulations is discussed. Combining the information from these techniques gives increased insight into the phenomenon and how to manipulate it. Diffraction measures the intensity of modulation and its wavelength, and is used to identify growth conditions giving strong modulation. The TEM and STEM analyses indicate that local compositions are modulated by as much as 0.38 InAs mole fraction. Plan-view images show that modulated structures consists of short ({approx_lt}0.2 {micro}m) In-rich wires with a 2D organization in a (001) growth plane. However, growth on miscut substrates can produce a single modulation along the miscut direction with much longer wires ({approx_gt}0.4 {micro}m), as desired for potential applications. Photoluminescence studies demonstrate that the modulation has large effects on the bandgap energy of the superlattice.

More Details

Magnetic anticrossing of 1D subbands in ballistic double quantum wires

Superlattices and Microstructures

Blount, M.A.; Simmons, J.A.; Moon, J.S.; Lyo, S.K.; Wendt, J.R.; Reno, J.L.

We study the low-temperature in-plane magnetoconductance of vertically coupled double quantum wires. Using a novel flip-chip technique, the wires are defined by two pairs of mutually aligned split gates on opposite sides of a≤1 micron thick AlGaAs/GaAs double quantum well heterostructure. We observe quantized conductance steps due to each quantum well and demonstrate independent control of each 1D wire. A broad dip in the magnetoconductance at approximately 6 T is observed when a magnetic field is applied perpendicular to both the current and growth directions. This conductance dip is observed only when 1D subbands are populated in both the top and bottom constrictions. This data is consistent with a counting model whereby the number of subbands crossing the Fermi level changes with field due to the formation of an anticrossing in each pair of 1D subbands.

More Details

Use of high index substrates to enable dislocation filtering in large mismatch systems

Reno, J.L.

We report results in three areas of research relevant to the fabrication of a wide range of optoelectronic devices: The development of a new x-ray diffraction technique that can be used to rapidly determine the optimal period of a strained layer superlattice to maximize the dislocation filtering; The optimal MBE growth parameters for the growth of CdTe on GaAs(211); The determination of the relative efficiency of dislocation filtering in the (211) and (100) orientations; and The surface quality of InSb grown by MOCVD on InSb substrates is affected by the misorientation of the substrate.

More Details

Growth and optical characterization of ZnMnTe grown by molecular beam epitaxy

Reno, J.L.

We have successfully grown ZnMnTe alloys by molecular beam epitaxy using GaAs as a substrate. Bulk MnTe has the wurtzite crystal structure but the structural phase of the material was confirmed to be zinc-blende by standard {theta}-2{theta} x-ray diffraction techniques. The composition was also determined using x-ray diffraction techniques. Manganese concentration was also estimated from magnetization measurements taken as a function of temperature. Magnetoluminescence studies were performed at 1.4K on the acceptor-bound exciton in the semimagnetic semiconductor ZnMnTe alloys. As expected, the photoluminescence peak energy decreased with increasing magnetic field.

More Details

Growth and optical characterization of Zn{sub 1-x}Mn{sub x}Te grown by molecular beam epitaxy

Reno, J.L.

We have grown Zn{sub 1-x}Mn{sub x}Te alloys by molecular beam epitaxy and characterized them using x-ray diffraction and low temperature magnetoluminescence. Zn{sub 1-x}Mn{sub x}Te is a dilute magnetic semiconductor (DMS) whose bandgap ranges from the green through the blue part of the spectrum and is therefore of interest for blue LEDs.

More Details

Optical characterization of CdZnTe/CdTe strained quantum wells

Reno, J.L.

Strained layer structures have received a great deal of attention due both to their possible application in electronic devices and their intrinsic interest. The study of strained layer quantum wells grown using lattice mismatched materials has been widely developed for III-V semiconductors. Strained layer quantum wells grown using II-VI materials have not been studied nearly so much as those from III-V, but they are a rapidly growing field of semiconductor research. The wide gap II-VI materials are of interest because they are generally direct gap materials. This makes them attractive for optoelectronic devices. The majority of the work on strained layer structures in the wide gap tellurium based materials has focused in two areas. The first is the inclusion of Mn to produce dilute magnetic semiconductors (DMS) strained layers and superlattices. The other area is CdTe/ZnTe quantum wells and superlattices. Some related work has been done with CdZnTe/ZnTe structures. For the CdZnTe/CdTe very little work has been done and the majority of that used very small amounts of Zn. In this paper we will present the growth and optical characterization of Cd{sub 1-x}Zn{sub x}Te/CdTe strained single quantum wells (SSQW) where the Zn concentration ranges from about 10 to 50%. 10 refs., 3 figs.

More Details
Results 326–343 of 343
Results 326–343 of 343