Block-structured adaptively refined meshes (SAMR) strive for efficient resolution of partial differential equations (PDEs) solved on large computational domains by clustering mesh points only where required by large gradients. Previous work has indicated that fourth-order convergence can be achieved on such meshes by using a suitable combination of high-order discretizations, interpolations, and filters and can deliver significant computational savings over conventional second-order methods at engineering error tolerances. In this paper, we explore the interactions between the errors introduced by discretizations, interpolations and filters. We develop general expressions for high-order discretizations, interpolations, and filters, in multiple dimensions, using a Fourier approach, facilitating the high-order SAMR implementation. We derive a formulation for the necessary interpolation order for given discretization and derivative orders. We also illustrate this order relationship empirically using one and two-dimensional model problems on refined meshes. We study the observed increase in accuracy with increasing interpolation order. We also examine the empirically observed order of convergence, as the effective resolution of the mesh is increased by successively adding levels of refinement, with different orders of discretization, interpolation, or filtering.
We performed calculations to investigate the classical theories of chain branching and thermal--run--away that lead to the rapid oxidation of fuels. Mathematically, both theories infer the existence of eigenvalues with positive real parts i.e., explosive modes. We found in studies of homogeneous hydrogen--air and the methane--air mixtures that when ignition is initiated by a sufficiently high initial temperature, the transient response of the system exhibits two stages. The first stage is characterized by the existence of explosive modes. The ensuing second stage consists of fast exponential decay modes that bring the system to its equilibrium point. We demonstrated with two examples that the existence of explosive modes is not a necessary condition for the existence of a premixed flame. Homogeneous ignition calculations for mixtures with an initial concentration of radical species suggest that the diffusive transport of radical species is probably responsible for the lack of explosive modes in premixed flames.