Publications

Results 51–55 of 55

Search results

Jump to search filters

Current Filament Semiconductor Lasers

Optics InfoBase Conference Papers

Zutavern, Fred J.; Baca, A.G.; Chow, Weng W.; Hafich, Michael J.; Hjalmarson, Harold P.; Loubriel, Guillermo M.; Mar, Alan M.; O'Malley, Martin W.; Vawter, Gregory A.

A new class of semiconductor laser is presented that does not require p-n junctions. Spectral narrowing, lasing thresholds, beam divergence, temporal narrowing, and energies are shown for these lasers based on current filaments in bulk GaAs.

More Details

Photoconductive Semiconductor Switch Technology for Short Pulse Electromagnetics and Lasers

Zutavern, Fred J.

High gain photoconductive semiconductor switches (PCSS) are being used to produce high power electromagnetic pulses foc (1) compact, repetitive accelerators, (2) ultra-wide band impulse sources, (3) precision gas switch triggers, (4) optically-activated firesets, and (5) high power optical pulse generation and control. High power, sub-nanosecond optical pulses are used for active optical sensors such as compact optical radars and range-gated hallistic imaging systems. Following a brief introduction to high gain PCSS and its general applications, this paper will focus on PCSS for optical pulse generation and control. PCSS technology can be employed in three distinct approaches to optical pulse generation and control: (1) short pulse carrier injection to induce gain-switching in semiconductor lasers, (2) electro-optical Q-switching, and (3) optically activated Q-switching. The most significant PCSS issues for these applications are switch rise time, jitter, and longevity. This paper will describe both the requirements of these applications and the most recent results from PCSS technology. Experiments to understand and expand the limitations of high gain PCSS will also be described.

More Details

A compact, repetitive accelerator for military and industrial applications

Zutavern, Fred J.

A compact, short pulse, repetitive accelerator has many useful military and commercial applications in biological counter proliferation, materials processing, radiography, and sterilization (medical instruments, waste, and food). The goal of this project was to develop and demonstrate a small, 700 kV accelerator, which can produce 7 kA particle beams with pulse lengths of 10--30 ns at rates up to 50 Hz. At reduced power levels, longer pulses or higher repetition rates (up to 10 kHz) could be achieved. Two switching technologies were tested: (1) spark gaps, which have been used to build low repetition rate accelerators for many years; and (2) high gain photoconductive semiconductor switches (PCSS), a new solid state switching technology. This plan was economical, because it used existing hardware for the accelerator, and the PCSS material and fabrication for one module was relatively inexpensive. It was research oriented, because it provided a test bed to examine the utility of other emerging switching technologies, such as magnetic switches. At full power, the accelerator will produce 700 kV and 7 kA with either the spark gap or PCSS pulser.

More Details

Optically controlled current filamentation in GaAs photoconductive semiconductor switches

IEEE International Pulsed Power Conference - Digest of Technical Papers

Zutavern, Fred J.

The use of focused laser beams and fiber optics to control the location and density of current filaments in GaAs photoconductive semiconductor switches (PCSS) is described in this paper. An intensified CCD camera is used to monitor the infrared photoluminescence of the filaments during fast initiation of high gain switching for several sizes of lateral GaAs PCSS (e.g. 0.5×5, 1×5, 2.5×5, 2×30, and 15×20 mm2). The switches are triggered with either a focused, mode-locked, Nd:YAG laser (532 and 1064 nm) or fiber-optically coupled semiconductor laser diodes (approximately 900 nm). The dependencies of the size, location, and density of the current filaments on the optical trigger, switch voltage, and switch current will be discussed. The impact of optically controlled current filaments on device design and lifetime is emphasized. Electro-optical switching amplification is demonstrated using the high gain switching mode of GaAs (lock-on). A single semiconductor laser diode is used to trigger a small GaAs PCSS. This PCSS is used to drive a 15-element laser diode array. Both electrical and optical pulse compression, sharpening, and amplification are achieved. Estimates for electrical and optical power gains are 8000 and 750 respectively.

More Details
Results 51–55 of 55
Results 51–55 of 55