Scientific Computing at Sandia: Trilinos and Zoltan
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Physics: Conference Series
Abstract not provided.
Abstract not provided.
SciDAC Review
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Graph partitioning is often used for load balancing in parallel computing, but it is known that hypergraph partitioning has several advantages. First, hypergraphs more accurately model communication volume, and second, they are more expressive and can better represent nonsymmetric problems. Hypergraph partitioning is particularly suited to parallel sparse matrix-vector multiplication, a common kernel in scientific computing. We present a parallel software package for hypergraph (and sparse matrix) partitioning developed at Sandia National Labs. The algorithm is a variation on multilevel partitioning. Our parallel implementation is novel in that it uses a two-dimensional data distribution among processors. We present empirical results that show our parallel implementation achieves good speedup on several large problems (up to 33 million nonzeros) with up to 64 processors on a Linux cluster.
Abstract not provided.
Proposed for publication in Linear Algebra and Its Applications.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report summarizes the research and development performed from October 2002 to September 2004 at Sandia National Laboratories under the Laboratory-Directed Research and Development (LDRD) project ''Massively-Parallel Linear Programming''. We developed a linear programming (LP) solver designed to use a large number of processors. LP is the optimization of a linear objective function subject to linear constraints. Companies and universities have expended huge efforts over decades to produce fast, stable serial LP solvers. Previous parallel codes run on shared-memory systems and have little or no distribution of the constraint matrix. We have seen no reports of general LP solver runs on large numbers of processors. Our parallel LP code is based on an efficient serial implementation of Mehrotra's interior-point predictor-corrector algorithm (PCx). The computational core of this algorithm is the assembly and solution of a sparse linear system. We have substantially rewritten the PCx code and based it on Trilinos, the parallel linear algebra library developed at Sandia. Our interior-point method can use either direct or iterative solvers for the linear system. To achieve a good parallel data distribution of the constraint matrix, we use a (pre-release) version of a hypergraph partitioner from the Zoltan partitioning library. We describe the design and implementation of our new LP solver called parPCx and give preliminary computational results. We summarize a number of issues related to efficient parallel solution of LPs with interior-point methods including data distribution, numerical stability, and solving the core linear system using both direct and iterative methods. We describe a number of applications of LP specific to US Department of Energy mission areas and we summarize our efforts to integrate parPCx (and parallel LP solvers in general) into Sandia's massively-parallel integer programming solver PICO (Parallel Interger and Combinatorial Optimizer). We conclude with directions for long-term future algorithmic research and for near-term development that could improve the performance of parPCx.
Abstract not provided.
Proposed for publication in the SIAM Journal on Matrix Analysis.
We consider linear systems arising from the use of the finite element method for solving a certain class of linear elliptic problems. Our main result is that these linear systems, which are symmetric and positive semidefinite, are well approximated by symmetric diagonally dominant matrices. Our framework for defining matrix approximation is support theory. Significant graph theoretic work has already been developed in the support framework for preconditioners in the diagonally dominant case, and in particular it is known that such systems can be solved with iterative methods in nearly linear time. Thus, our approximation result implies that these graph theoretic techniques can also solve a class of finite element problems in nearly linear time. We show that the quality of our approximation, which controls the number of iterations in the preconditioned iterative solver, depends primarily on a mesh quality measure but not on the problem size or shape of the domain.
Lecture Notes in Computer Science
In large-scale parallel applications a graph coloring is often carried out to schedule computational tasks. In this paper, we describe a new distributed-memory algorithm for doing the coloring itself in parallel. The algorithm operates in an iterative fashion; in each round vertices are speculatively colored based on limited information, and then a set of incorrectly colored vertices, to be recolored in the next round, is identified. Parallel speedup is achieved in part by reducing the frequency of communication among processors. Experimental results on a PC cluster using up to 16 processors show that the algorithm is scalable. © Springer-Verlag Berlin Heidelberg 2005.
Proposed for publication in SIAM Journal of Matrix Analysis.
We consider linear systems arising from the use of the finite element method for solving scalar linear elliptic problems. Our main result is that these linear systems, which are symmetric and positive semidefinite, are well approximated by symmetric diagonally dominant matrices. Our framework for defining matrix approximation is support theory. Significant graph theoretic work has already been developed in the support framework for preconditioners in the diagonally dominant case, and in particular it is known that such systems can be solved with iterative methods in nearly linear time. Thus, our approximation result implies that these graph theoretic techniques can also solve a class of finite element problems in nearly linear time. We show that the support number bounds, which control the number of iterations in the preconditioned iterative solver, depend on mesh quality measures but not on the problem size or shape of the domain.
We have developed infrastructure, utilities and partitioning methods to improve data partitioning in linear solvers and preconditioners. Our efforts included incorporation of data repartitioning capabilities from the Zoltan toolkit into the Trilinos solver framework, (allowing dynamic repartitioning of Trilinos matrices); implementation of efficient distributed data directories and unstructured communication utilities in Zoltan and Trilinos; development of a new multi-constraint geometric partitioning algorithm (which can generate one decomposition that is good with respect to multiple criteria); and research into hypergraph partitioning algorithms (which provide up to 56% reduction of communication volume compared to graph partitioning for a number of emerging applications). This report includes descriptions of the infrastructure and algorithms developed, along with results demonstrating the effectiveness of our approaches.