Parallel Preconditioners and Solvers for Modern Architectures
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings of the Workshop on Algorithm Engineering and Experiments
Solving Laplacian linear systems is an important task in a variety of practical and theoretical applications. This problem is known to have solutions that perform in linear times polylogarithmic work in theory, but these algorithms are difficult to implement in practice. We examine existing solution techniques in order to determine the best methods currently available and for which types of problems are they useful. We perform timing experiments using a variety of solvers on a variety of problems and present our results. We discover differing solver behavior between web graphs and a class of synthetic graphs designed to model them.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Informatica
A new approach for solving Laplacian linear systems proposed by Kelner et al. involves the random sampling and update of fundamental cycles in a graph. We evaluate the performance of this approach on a variety of real world graphs. We examine di erent ways to choose the set of cycles and their sequence of updates with the goal of providing more exibility and potential parallelism. We propose a parallel model of the Kelner et al. method for evaluating potential parallelism concerned with minimizing the span of edges updated at every iteration. We provide experimental results comparing the potential parallelism of the fundamental cycle basis and the extended basis. Our preliminary experiments show that choosing a non-fundamental set of cycles can save signi cant work compared to a fundamental cycle basis.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This LDRD project was a campus exec fellowship to fund (in part) Donald Nguyen’s PhD research at UT-Austin. His work has focused on parallel programming models, and scheduling irregular algorithms on shared-memory systems using the Galois framework. Galois provides a simple but powerful way for users and applications to automatically obtain good parallel performance using certain supported data containers. The naïve user can write serial code, while advanced users can optimize performance by advanced features, such as specifying the scheduling policy. Galois was used to parallelize two sparse matrix reordering schemes: RCM and Sloan. Such reordering is important in high-performance computing to obtain better data locality and thus reduce run times.
Abstract not provided.
The purpose of this report is to document a basic installation of the Anasazi eigensolver package and provide a brief discussion on the numerical solution of some graph eigenvalue problems.
Abstract not provided.
Abstract not provided.
Abstract not provided.
International Conference for High Performance Computing, Networking, Storage and Analysis, SC
Krylov subspace projection methods are widely used iterative methods for solving large-scale linear systems of equations. Researchers have demonstrated that communication avoiding (CA) techniques can improve Krylov methods' performance on modern computers, where communication is becoming increasingly expensive compared to arithmetic operations. In this paper, we extend these studies by two major contributions. First, we present our implementation of a CA variant of the Generalized Minimum Residual (GMRES) method, called CAGMRES, for solving no symmetric linear systems of equations on a hybrid CPU/GPU cluster. Our performance results on up to 120 GPUs show that CA-GMRES gives a speedup of up to 2.5x in total solution time over standard GMRES on a hybrid cluster with twelve Intel Xeon CPUs and three Nvidia Fermi GPUs on each node. We then outline a domain decomposition framework to introduce a family of preconditioners that are suitable for CA Krylov methods. Our preconditioners do not incur any additional communication and allow the easy reuse of existing algorithms and software for the sub domain solves. Experimental results on the hybrid CPU/GPU cluster demonstrate that CA-GMRES with preconditioning achieve a speedup of up to 7.4x over CAGMRES without preconditioning, and speedup of up to 1.7x over GMRES with preconditioning in total solution time. These results confirm the potential of our framework to develop a practical and effective preconditioned CA Krylov method.
Abstract not provided.