Design and Synthesis of Novel Porous Materials for Energy and Environmental Applications
Abstract not provided.
Abstract not provided.
Abstract not provided.
RSC Advances
Here we report for the first time the feasibility of using metal-organic frameworks (MOFs) as electrodes for aqueous Na-ion batteries. We show that Fe-MIL-100, a known redox-active MOF, is electrochemically active in a Na aqueous electrolyte, under various compositions. Emphasis was placed on investigating the electrode-electrolyte interface, with a focus on identifying the relationship between additives in the composition of the working electrode, particle size and overall performance. We found that the energy storage capacity is primarily dependent on the binder additive in the composite; the best activity for this MOF is obtained with Nafion as a binder, owing to its hydrophilic and ion conducting nature. Kynar-bound electrodes are clearly less effective, due to their hydrophobic character, which impedes wetting of the electrode. The binder-free systems show the poorest electrochemical activity. There is little difference in the overall performance as function of particle size (micro vs. nano), implying the storage capacities in this study are not limited by ionic and/or electronic conductivity. Excellent reversibility and high coulombic efficiency are achieved at higher potential ranges, observed after cycle 20. That is despite progressive capacity decay observed in the initial cycles. Importantly, structural analyses of cycled working electrodes confirm that the long range crystallinity remains mainly unaltered with cycling. These findings suggest that limited reversibility of the intercalated Na ions in the lower potential range, together with the gradual lack of available active sites in subsequent cycles is responsible for the rapid decay in capacity retention.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IUCrData
We report here the synthesis of a neutral viologen derivative, C24H16N2O4·2H2O. The non-solvent portion of the structure (
Abstract not provided.
Chemistry of Materials
An open pored metal-organic framework (MOF) with oxygen selectivity at exceptionally high temperatures is confirmed by synthesis, sorption, and synchrotron structural analyses. The large-pore MIL-100 framework with access to the metal center (e.g., Sc and Fe) resulted in preferential O2 over N2 gas uptake at temperatures ranging from 77 K to ambient temperatures (258, 298, and 313 K). Most notably, Sc-MIL-100 shows exceptional O2 sorption; pair distribution function analyses indicate that this is due to distortions in the framework owing to the size of Sc atoms, in particular in the trimer metal cluster. Experimental studies also correlate very well with GCMC simulations, confirming more favorable O2-framework interactions at pressures up to 1 bar, due to the close proximity of O2 to the high density of metal centers in the small tetrahedral cages. Both materials maintain their crystallinity upon gas adsorption cycling, are regenerable, and show exceptional promise for use in energy efficient oxygen purification processes, such as Pressure Swing Adsorption.
Physical Chemistry Chemical Physics. PCCP
The separation of oxygen from nitrogen using metal–organic frameworks (MOFs) is of great interest for potential pressure-swing adsorption processes for the generation of purified O2 on industrial scales. This study uses ab initio molecular dynamics (AIMD) simulations to examine for the first time the pure-gas and competitive gas adsorption of O2 and N2 in the M2(dobdc) (M = Cr, Mn, Fe) MOF series with coordinatively unsaturated metal centers. Effects of metal, temperature, and gas composition are explored. Lastly, this unique application of AIMD allows us to study in detail the adsorption/desorption processes and to visualize the process of multiple guests competitively binding to coordinatively unsaturated metal sites of a MOF.
Abstract not provided.
Abstract not provided.
Journal of the Electrochemical Society
We study nanoporous-carbon (NPC) grown via pulsed laser deposition (PLD) as an electrically conductive anode host material for Mg2+ intercalation. NPC has high surface area, and an open, accessible pore structure tunable via mass density that can improve diffusion. We fabricate 2032 coin cells using NPC coated stainless-steel disk anodes, metallic Mg cathodes, and a Grignardbased electrolyte. NPC mass density is controlled during growth, ranging from 0.06-1.3 g/cm3. The specific surface area of NPC increases linearly from 1,000 to 1,700 m2/g as mass density decreases from 1.3 to 0.26 g/cm3, however, the surface area falls off dramatically at lowermass densities, implying a lack of mechanical integrity in such nanostructures. These structural characterizations correlate directly with coin cell electrochemical measurements. In particular, cyclic voltammetry (CV) scans for NPC with density ∼0.5 g/cm3 and BET surface area ∼1500 m2/g infer the possibility of reversible Mg-ion intercalation. Higher density NPC yields capacitive behavior, most likely resulting from the smaller interplanar spacings between graphene sheet fragments and tighter domain boundaries; lower density NPC results in asymmetrical CV scans, consistent with the likely structural degradation resulting from mass transport through soft, low-density carbon materials.
Abstract not provided.
Abstract not provided.
Oxy-fuel combustion is a well-known approach to improve the heat transfer associated with stationary energy processes. Its overall penetration into industrial and power markets is constrained by the high cost of existing air separation technologies for generating oxygen. Cryogenic air separation is the most widely used technology for generating oxygen but is complex and expensive. Pressure swing adsorption is a competing technology that uses activated carbon, zeolites and polymer membranes for gas separations. However, it is expensive and limited to moderate purity O₂ . MOFs are cutting edge materials for gas separations at ambient pressure and room temperature, potentially revolutionizing the PSA process and providing dramatic process efficiency improvements through oxy-fuel combustion. This LDRD combined (1) MOF synthesis, (2) gas sorption testing, (3) MD simulations and crystallography of gas siting in pores for structure-property relationship, (4) combustion testing and (5) technoeconomic analysis to aid in real-world implementation.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Physical Chemistry C
Computational screening of metal-organic framework (MOF) materials for selective oxygen adsorption from air is used to identify new sorbents for oxyfuel combustion process feedstock streams. A comprehensive study on the effect of MOF metal chemistry on gas binding energies in two common but structurally disparate MOFs has been undertaken. Dispersion-corrected density functional theory (DFT) methods were used to calculate the oxygen and nitrogen binding energies with each of 14 metals, respectively, substituted into two MOF series, M2(dobdc) and M3(btc)2. The accuracy of DFT methods was validated by comparing trends in binding energy with experimental gas sorption measurements. A periodic trend in oxygen binding energies was found, with greater oxygen binding energies for early transition-metal-substituted MOFs compared to late transition metal MOFs; this was independent of MOF structural type. The larger binding energies were associated with oxygen binding in a side-on configuration to the metal, with concomitant lengthening of the O-O bond. In contrast, nitrogen binding energies were similar across the transition metal series, regardless of both MOF structural type and metal identity. Taken together, these findings suggest that early transition metal MOFs are best suited to separating oxygen from nitrogen and that the MOF structural type is less important than the metal identity.
Chemistry of Materials
Here we describe the homogeneous substitution of Mn, Fe and Co at various levels into a prototypical metal-organic framework (MOF), namely Cu-BTC (HKUST-1), and the effect of that substitution on preferential gas sorption. Using a combination of density functional theory (DFT) calculations, postsynthetic metal substitutions, materials characterization, and gas sorption testing, we demonstrate that the identity of the metal ion has a quantifiable effect on their oxygen and nitrogen sorption properties at cryogenic temperatures. An excellent correlation is found between O2/N2 selectivities determined experimentally at 77 K and the difference in O2 and N2 binding energies calculated from DFT modeling data: Mn > Fe > Co > Cu. Room temperature gas sorption studies were also performed and correlated with metal substitution. The Fe-exchanged sample shows a significantly higher nitrogen isosteric heat of adsorption at temperatures close to ambient conditions (273 K - 298 K) as compared to all other metals studied, indicative of favorable interactions between N2 and coordinatively unsaturated Fe metal centers. Furthermore, differences in gas adsorption results at cryogenic and room temperatures are evident; they are explained by comparing experimental results with DFT binding energies (0 K) and room temperature Grand Canonical Monte Carlo simulations.
Abstract not provided.
Abstract not provided.
Journal of the Electrochemical Society
We study nanoporous-carbon (NPC) grown via pulsed laser deposition (PLD) as a sorbent coating on 96.5-MHz surface-acousticwave (SAW) devices to detect trihalomethanes (THMs), regulated byproducts from the chemical treatment of drinking water. Using both insertion-loss and isothermal-response measurements from known quantities of chloroform, the highest vapor pressure THM, we optimize the NPC mass-density at 1.05 ± 0.08 g/cm3 by controlling the background argon pressure during PLD. Precise THM quantities in a chlorobenzene solvent are directly injected into a separation column and detected as the phase-angle shift of the SAW device output compared to the drive signal. Using optimized NPC-coated SAWs, we study the chloroform response as a function of operating temperatures ranging from 10.50°C. Finally, we demonstrate individual responses from complex mixtures of all four THMs, with masses ranging from 10.2000 ng, after gas chromatography separation. Estimates for each THM detection limit using a simple peak-height response evaluation are 4.4 ng for chloroform and 1 ng for bromoform; using an integrated-peak area response analysis improves the detection limits to 0.73 ng for chloroform and 0.003 ng bromoform.