Separations with MOFs via Predictive Modeling and Tuned Synthesis
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Chemistry of Materials
Here, we introduce a family of metal-organic frameworks (MOFs) whose photoluminescence is tunable through metal and organic ligand substitutions. The compounds in this family are composed of In, In-Eu, or Eu metal centers and organic ligand chromophores. Systematic variations in the metal and organic components resulted in materials with emissions ranging from white to red. The single-component white-light emitter material is made of In, 4,4′,4″-s-triazine-2,4,6-triyl-tribenzoic acid (TTB) and oxalic acid. Red-emitting MOFs composed of Eu metal centers and TTB ligands have a room temperature quantum yield (QY) of 50% and a 48% QY at 150 °C due to reversible thermal quenching. This is the highest quantum yield measured at elevated temperatures reported for this class of materials. The materials are thermally stable, retaining their high QY after heating at 150 °C for several hours. These thermal quenching/stability studies show the potential use of MOFs in devices that operate at elevated temperatures, such as white-light-emitting diodes for solid-state lighting. This is a unique study that correlates the QY, thermal quenching, and thermal stability of MOFs with structural properties. © 2014 American Chemical Society.
Abstract not provided.
Abstract not provided.
Acta Crystallographica E. Structure Reports online
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of the American Chemical Association
Abstract not provided.
Abstract not provided.
J. American Chemical Society
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
We, the Postdoc Professional Development Program (PD2P) leadership team, wrote these postdoc guidelines to be a starting point for communication between new postdocs, their staff mentors, and their managers. These guidelines detail expectations and responsibilities of the three parties, as well as list relevant contacts. The purpose of the Postdoc Program is to bring in talented, creative people who enrich Sandia's environment by performing innovative R&D, as well as by stimulating intellectual curiosity and learning. Postdocs are temporary employees who come to Sandia for career development and advancement reasons. In general, the postdoc term is 1 year, renewable up to five times for a total of six years. However, center practices may vary; check with your manager. At term, a postdoc may apply for a staff position at Sandia or choose to move to university, industry or another lab. It is our vision that those who leave become long-term collaborators and advocates whose relationships with Sandia have a positive effect upon our national constituency.
Abstract not provided.
Industrial and Engineering Chemistry Research
The safe handling of reprocessed fuel addresses several scientific goals, especially when considering the capture and long-term storage of volatile radionuclides that are necessary during this process. Despite not being a major component of the offgas, radioiodine (I 2) is particularly challenging, because it is a highly mobile gas and 129I is a long-lived radionuclide (1.57 × 10 7 years). Therefore, its capture and sequestration is of great interest on a societal level. Herein, we explore novel routes toward the effective capture and storage of iodine. In particular, we report on the novel use of a new class of porous solid-state functional materials (metal-organic frameworks, MOFs), as high-capacity adsorbents of molecular iodine. We further describe the formation of novel glass-composite material (GCM) waste forms from the mixing and sintering of the I 2-containing MOFs with Bi-Zn-O low-temperature sintering glasses and silver metal flakes. Our findings indicate that, upon sintering, a uniform monolith is formed, with no evidence of iodine loss; iodine is sequestered during the heating process by the in situ formation of AgI. Detailed materials characterization analysis is presented for the GCMs. This includes powder X-ray diffraction, scanning electron microscopy coupled with energy-dispersive spectroscopy (SEM-EDS), thermal analysis (thermogravimetric analysis (TGA)), and chemical durability tests including aqueous leach studies (product consistency test (PCT)), with X-ray fluorescence (XRF) and inductively coupled plasma-mass spectrometry (ICP-MS) of the PCT leachate. © 2011 American Chemical Society.