Publications

Results 1–25 of 236

Search results

Jump to search filters

Bimolecular Reaction of Methyl-Ethyl-Substituted Criegee Intermediate with SO2

Journal of Physical Chemistry A

Zou, Meijun; Liu, Tianlin; Vansco, Michael F.; Sojdak, Christopher A.; Markus, Charles R.; Almeida, Raybel A.; Au, Kendrew; Sheps, Leonid S.; Osborn, David L.; Winiberg, Frank A.F.; Percival, Carl J.; Taatjes, Craig A.; Klippenstein, Stephen J.; Lester, Marsha I.; Caravan, Rebecca L.

Methyl-ethyl-substituted Criegee intermediate (MECI) is a four-carbon carbonyl oxide that is formed in the ozonolysis of some asymmetric alkenes. MECI is structurally similar to the isoprene-derived methyl vinyl ketone oxide (MVK-oxide) but lacks resonance stabilization, making it a promising candidate to help us unravel the effects of size, structure, and resonance stabilization that influence the reactivity of atmospherically important, highly functionalized Criegee intermediates. We present experimental and theoretical results from the first bimolecular study of MECI in its reaction with SO2, a reaction that shows significant sensitivity to the Criegee intermediate structure. Using multiplexed photoionization mass spectrometry, we obtain a rate coefficient of (1.3 ± 0.3) × 10-10 cm3 s-1 (95% confidence limits, 298 K, 10 Torr) and demonstrate the formation of SO3 under our experimental conditions. Through high-level theory, we explore the effect of Criegee intermediate structure on the minimum energy pathways for their reactions with SO2 and obtain modified Arrhenius fits to our predictions for the reaction of both syn and anti conformers of MECI with SO2 (ksyn = 4.42 × 1011 T-7.80exp(−1401/T) cm3 s-1 and kanti = 1.26 × 1011 T-7.55exp(−1397/T) cm3 s-1). Our experimental and theoretical rate coefficients (which are in reasonable agreement at 298 K) show that the reaction of MECI with SO2 is significantly faster than MVK-oxide + SO2, demonstrating the substantial effect of resonance stabilization on Criegee intermediate reactivity.

More Details

OH Roaming and Beyond in the Unimolecular Decay of the Methyl-Ethyl-Substituted Criegee Intermediate: Observations and Predictions

Journal of the American Chemical Society

Liu, Tianlin; Elliott, Sarah N.; Zou, Meijun; Vansco, Michael F.; Sojdak, Christopher A.; Markus, Charles R.; Almeida, Raybel; Au, Kendrew; Sheps, Leonid S.; Osborn, David L.; Percival, Carl J.; Taatjes, Craig A.; Caravan, Rebecca L.; Klippenstein, Stephen J.; Lester, Marsha I.

Alkene ozonolysis generates short-lived Criegee intermediates that are a significant source of hydroxyl (OH) radicals. This study demonstrates that roaming of the separating OH radicals can yield alternate hydroxycarbonyl products, thereby reducing the OH yield. Specifically, hydroxybutanone has been detected as a stable product arising from roaming in the unimolecular decay of the methyl-ethyl-substituted Criegee intermediate (MECI) under thermal flow cell conditions. The dynamical features of this novel multistage dissociation plus a roaming unimolecular decay process have also been examined with ab initio kinetics calculations. Experimentally, hydroxybutanone isomers are distinguished from the isomeric MECI by their higher ionization threshold and distinctive photoionization spectra. Moreover, the exponential rise of the hydroxybutanone kinetic time profile matches that for the unimolecular decay of MECI. A weaker methyl vinyl ketone (MVK) photoionization signal is also attributed to OH roaming. Complementary multireference electronic structure calculations have been utilized to map the unimolecular decay pathways for MECI, starting with 1,4 H atom transfer from a methyl or methylene group to the terminal oxygen, followed by roaming of the separating OH and butanonyl radicals in the long-range region of the potential. Roaming via reorientation and the addition of OH to the vinyl group of butanonyl is shown to yield hydroxybutanone, and subsequent C-O elongation and H-transfer can lead to MVK. A comprehensive theoretical kinetic analysis has been conducted to evaluate rate constants and branching yields (ca. 10-11%) for thermal unimolecular decay of MECI to conventional and roaming products under laboratory and atmospheric conditions, consistent with the estimated experimental yield (ca. 7%).

More Details

The role of radical-radical chain-propagating pathways in the phenyl + propargyl reaction

Proceedings of the Combustion Institute

Couch, David E.; Kukkadapu, Goutham; Zhang, Angie J.; Jasper, Ahren W.; Taatjes, Craig A.; Hansen, Nils H.

Well-skipping radical-radical reactions can provide a chain-propagating pathway for formation of polycyclic radicals implicated in soot inception. Here we use controlled pyrolysis in a microreactor to isolate and examine the role of well-skipping channels in the phenyl (C6H5) + propargyl (C3H3) radical-radical reaction at temperatures of 800–1600 K and pressures near 25 Torr. The temperature and concentration dependence of the closed-shell (C9H8) and radical (C9H7) products are observed using electron-ionization mass spectrometry. The flow in the reactor is simulated using a boundary layer model employing a chemical mechanism based on recent rate coefficient calculations. Comparison between simulation and experiment shows reasonable agreement, within a factor of 3, while suggesting possible improvements to the model. In contrast, eliminating the well-skipping reactions from the chemistry mechanism causes a much larger discrepancy between simulation and experiment in the temperature dependence of the radical concentration, revealing that the well-skipping pathways, especially to form indenyl radical, are significant at temperatures of 1200 K and higher. While most C9H7 forms by well-skipping at 25 Torr, an additional simulation indicates that the well-skipping channels only contribute around 3% of the C9Hx yield at atmospheric pressure, thus indicating a negligible role of the well-skipping pathways at atmospheric and higher pressures.

More Details

Prospects and Limitations of Predicting Fuel Ignition Properties from Low-Temperature Speciation Data

Energy and Fuels

Buras, Zachary; Hansen, Nils H.; Taatjes, Craig A.; Sheps, Leonid S.

Using chemical kinetic modeling and statistical analysis, we investigate the possibility of correlating key chemical "markers"-typically small molecules-formed during very lean (φ ∼0.001) oxidation experiments with near-stoichiometric (φ ∼1) fuel ignition properties. One goal of this work is to evaluate the feasibility of designing a fuel-screening platform, based on small laboratory reactors that operate at low temperatures and use minimal fuel volume. Buras et al. [Combust. Flame 2020, 216, 472-484] have shown that convolutional neural net (CNN) fitting can be used to correlate first-stage ignition delay times (IDTs) with OH/HO2measurements during very lean oxidation in low-T flow reactors with better than factor-of-2 accuracy. In this work, we test the limits of applying this correlation-based approach to predict the low-temperature heat release (LTHR) and total IDT, including the sensitivity of total IDT to the equivalence ratio, φ. We demonstrate that first-stage IDT can be reliably correlated with very lean oxidation measurements using compressed sensing (CS), which is simpler to implement than CNN fitting. LTHR can also be predicted via CS analysis, although the correlation quality is somewhat lower than for first-stage IDT. In contrast, the accuracy of total IDT prediction at φ = 1 is significantly lower (within a factor of 4 or worse). These results can be rationalized by the fact that the first-stage IDT and LTHR are primarily determined by low-temperature chemistry, whereas total IDT depends on low-, intermediate-, and high-temperature chemistry. Oxidation reactions are most important at low temperatures, and therefore, measurements of universal molecular markers of oxidation do not capture the full chemical complexity required to accurately predict the total IDT even at a single equivalence ratio. As a result, we find that φ-sensitivity of ignition delay cannot be predicted at all using solely correlation with lean low-T chemical speciation measurements.

More Details

Dramatic Conformer-Dependent Reactivity of the Acetaldehyde Oxide Criegee Intermediate with Dimethylamine Via a 1,2-Insertion Mechanism

Journal of Physical Chemistry A

Ramasesha, Krupa R.; Osborn, David L.; Taatjes, Craig A.

The reactivity of carbonyl oxides has previously been shown to exhibit strong conformer and substituent dependencies. Through a combination of synchrotron-multiplexed photoionization mass spectrometry experiments (298 K and 4 Torr) and high-level theory [CCSD(T)-F12/cc-pVTZ-F12//B2PLYP-D3/cc-pVTZ with an added CCSDT(Q) correction], we explore the conformer dependence of the reaction of acetaldehyde oxide (CH3CHOO) with dimethylamine (DMA). The experimental data support the theoretically predicted 1,2-insertion mechanism and the formation of an amine-functionalized hydroperoxide reaction product. Tunable-vacuum ultraviolet photoionization probing of anti- or anti- + syn-CH3CHOO reveals a strong conformer dependence of the title reaction. The rate coefficient of DMA with anti-CH3CHOO is predicted to exceed that for the reaction with syn-CH3CHOO by a factor of ∼34,000, which is attributed to submerged barrier (syn) versus barrierless (anti) mechanisms for energetically downhill reactions.

More Details

Experimental Observation of Hydrocarbon Growth by Resonance-Stabilized Radical–Radical Chain Reaction

Angewandte Chemie - International Edition

Couch, David E.; Zhang, Angie J.; Taatjes, Craig A.; Hansen, Nils H.

Rapid molecular-weight growth of hydrocarbons occurs in flames, in industrial synthesis, and potentially in cold astrochemical environments. A variety of high- and low-temperature chemical mechanisms have been proposed and confirmed, but more facile pathways may be needed to explain observations. We provide laboratory confirmation in a controlled pyrolysis environment of a recently proposed mechanism, radical–radical chain reactions of resonance-stabilized species. The recombination reaction of phenyl (c-C6H5) and benzyl (c-C6H5CH2) radicals produces both diphenylmethane and diphenylmethyl radicals, the concentration of the latter increasing with rising temperature. A second phenyl addition to the product radical forms both triphenylmethane and triphenylmethyl radicals, confirming the propagation of radical–radical chain reactions under the experimental conditions of high temperature (1100–1600 K) and low pressure (ca. 3 kPa). Similar chain reactions may contribute to particle growth in flames, the interstellar medium, and industrial reactors.

More Details

Influence of functional groups on low-temperature combustion chemistry of biofuels

Progress in Energy and Combustion Science

Rotavera, Brandon; Taatjes, Craig A.

Ongoing progress in synthetic biology, metabolic engineering, and catalysis continues to produce a diverse array of advanced biofuels with complex molecular structure and functional groups. In order to integrate biofuels into existing combustion systems, and to optimize the design of next-generation combustion systems, understanding connections between molecular structure and ignition at low-temperature conditions (< 1000 K) remains a priority that is addressed in part using chemical kinetics modeling. The development of predictive models relies on detailed information, derived from experimental and theoretical studies, on molecular structure and chemical reactivity, both of which influence the balance of chain reactions that occur during combustion – propagation, termination, and branching. In broad context, three main categories of reactions affect ignition behavior: (i) initiation reactions that generate a distribution of organic radicals, R˙; (ii) competing unimolecular decomposition of R˙ and bimolecular reaction of R˙ with O2; (iii) decomposition mechanisms of peroxy radical adducts (ROO˙), including isomerization via ROO˙ ⇌ Q˙OOH. All three categories are influenced by functional groups in different ways, which causes a shift in the balance of chain reactions that unfold over complex temperature- and pressure-dependent mechanisms. The objective of the present review is three-fold: (1) to provide a historical account of research on low-temperature oxidation of biofuels, including initiation reactions, peroxy radical reactions, Q˙OOH-mediated reaction mechanisms, and chain-branching chemistry; (2) to summarize the influence of functional groups on chemical kinetics relevant to chain-branching reactions, which are responsible for the accelerated production of radicals that leads to ignition; (3) to identify areas of research that are needed – experimentally and computationally – to address fundamental questions that remain. Results from experimental, quantum chemical, and chemical kinetics modeling studies are reviewed for several classes of biofuels – alcohols, esters, ketones, acyclic ethers and cyclic ethers – and are compared against analogous results in alkane oxidation. The review is organized into separate sections for each biofuel class, which include studies on thermochemistry and bond dissociation energies, rate coefficients for initiation reactions via H-abstraction and related branching fractions, reaction mechanisms and product formation from reactive intermediates, ignition delay times, and chemical kinetics modeling. Each section is then summarized in order to identify areas for which additional functional group-specific work is required. The review concludes with an outline for research directions for improving the fundamental understanding of biofuel ignition chemistry and related chemical kinetics modeling.

More Details

Investigation of the Production of Trifluoroacetic Acid from Two Halocarbons, HFC-134a and HFO-1234yf and Its Fates Using a Global Three-Dimensional Chemical Transport Model

ACS Earth and Space Chemistry

Holland, Rayne; Khan, M.A.H.; Driscoll, Isabel; Chhantyal-Pun, Rabi; Derwent, Richard G.; Taatjes, Craig A.; Orr-Ewing, Andrew J.; Percival, Carl J.; Shallcross, Dudley E.

Trifluoroacetic acid (TFA), a highly soluble and stable organic acid, is photochemically produced by certain anthropogenically emitted halocarbons such as HFC-134a and HFO-1234yf. Both these halocarbons are used as refrigerants in the automobile industry, and the high global warming potential of HFC-134a has promoted regulation of its use. Industries are transitioning to the use of HFO-1234yf as a more environmentally friendly alternative. We investigated the environmental effects of this change and found a 33-fold increase in the global burden of TFA from an annual value of 65 tonnes formed from the 2015 emissions of HFC-134a to a value of 2220 tonnes formed from an equivalent emission of HFO-1234yf. The percentage increase in surface TFA concentrations resulting from the switch from HFC-134a to HFO-1234yf remains substantial with an increase of up to 250-fold across Europe. The increase in emissions greater than the current emission scenario of HFO-1234yf is likely to result in significant TFA burden as the atmosphere is not able to disperse and deposit relevant oxidation products. The Criegee intermediate initiated loss process of TFA reduces the surface level atmospheric lifetime of TFA by up to 5 days (from 7 days to 2 days) in tropical forested regions.

More Details

Reaction mechanisms of a cyclic ether intermediate: Ethyloxirane

International Journal of Chemical Kinetics

Christianson, Matthew G.; Doner, Anna C.; Davis, Matthew M.; Koritzke, Alanna L.; Turney, Justin M.; Schaefer, Henry F.; Sheps, Leonid S.; Osborn, David L.; Taatjes, Craig A.; Rotavera, Brandon

Oxiranes are a class of cyclic ethers formed in abundance during low-temperature combustion of hydrocarbons and biofuels, either via chain-propagating steps that occur from unimolecular decomposition of β-hydroperoxyalkyl radicals (β-̇QOOH) or from reactions of HOȮ with alkenes. Ethyloxirane is one of four alkyl-substituted cyclic ether isomers produced as an intermediate from n-butane oxidation. While rate coefficients for β-̇QOOH → ethyloxirane + ȮH are reported extensively, subsequent reaction mechanisms of the cyclic ether are not. As a result, chemical kinetics mechanisms commonly adopt simplified chemistry to describe ethyloxirane consumption by convoluting several elementary reactions into a single step, which may introduce mechanism truncation error—uncertainty derived from missing or incomplete chemistry. The present work provides fundamental insight on reaction mechanisms of ethyloxirane in support of ongoing efforts to minimize mechanism truncation error. Reaction mechanisms are inferred from the detection of products during chlorine atom-initiated oxidation experiments using multiplexed photoionization mass spectrometry conducted at 10 Torr and temperatures of 650 K and 800 K. To complement the experiments, calculations of stationary point energies were conducted using the ccCA-PS3 composite method on ̇R + O2 potential energy surfaces for the four ethyloxiranyl radical isomers, which produced barrier heights for 24 reaction pathways. In addition to products from ̇QOOH → cyclic ether + ȮH and ̇R + O2 → conjugate alkene + HOȮ, both of which were significant pathways and are prototypical to alkane oxidation, other species were identified from ring-opening of both ethyloxiranyl and ̇QOOH radicals. The latter occurs when the unpaired electron is localized on the ether group, causing the initial ̇QOOH structure to ring-open and form a resonance-stabilized ketohydroperoxide-type radical. The present work provides the first analysis of ethyloxirane oxidation chemistry, which reveals that consumption pathways are complex and may require an expansion of submechanisms to increase the fidelity of chemical kinetics mechanisms.

More Details

Formic acid catalyzed isomerization and adduct formation of an isoprene-derived Criegee intermediate: Experiment and theory

Physical Chemistry Chemical Physics

Vansco, Michael F.; Caravan, Rebecca L.; Pandit, Shubhrangshu; Zuraski, Kristen; Winiberg, Frank A.F.; Au, Kendrew; Bhagde, Trisha; Trongsiriwat, Nisalak; Walsh, Patrick J.; Osborn, David L.; Percival, Carl J.; Klippenstein, Stephen J.; Taatjes, Craig A.; Lester, Marsha I.

Isoprene is the most abundant non-methane hydrocarbon emitted into the Earth's atmosphere. Ozonolysis is an important atmospheric sink for isoprene, which generates reactive carbonyl oxide species (R1R2CO+O-) known as Criegee intermediates. This study focuses on characterizing the catalyzed isomerization and adduct formation pathways for the reaction between formic acid and methyl vinyl ketone oxide (MVK-oxide), a four-carbon unsaturated Criegee intermediate generated from isoprene ozonolysis. syn-MVK-oxide undergoes intramolecular 1,4 H-atom transfer to form a substituted vinyl hydroperoxide intermediate, 2-hydroperoxybuta-1,3-diene (HPBD), which subsequently decomposes to hydroxyl and vinoxylic radical products. Here, we report direct observation of HPBD generated by formic acid catalyzed isomerization of MVK-oxide under thermal conditions (298 K, 10 torr) using multiplexed photoionization mass spectrometry. The acid catalyzed isomerization of MVK-oxide proceeds by a double hydrogen-bonded interaction followed by a concerted H-atom transfer via submerged barriers to produce HPBD and regenerate formic acid. The analogous isomerization pathway catalyzed with deuterated formic acid (D2-formic acid) enables migration of a D atom to yield partially deuterated HPBD (DPBD), which is identified by its distinct mass (m/z 87) and photoionization threshold. In addition, bimolecular reaction of MVK-oxide with D2-formic acid forms a functionalized hydroperoxide adduct, which is the dominant product channel, and is compared to a previous bimolecular reaction study with normal formic acid. Complementary high-level theoretical calculations are performed to further investigate the reaction pathways and kinetics.

More Details

Isomer-Dependent Reaction Mechanisms of Cyclic Ether Intermediates: cis-23-Dimethyloxirane and trans-23-Dimethyloxirane

International Journal of Chemical Kinetics

Doner, Anna C.; Davis, Matthew M.; Koritzke, Alanna L.; Christianson, Matthew G.; Turney, Justin M.; Schaefer, Henry F.; Sheps, Leonid S.; Osborn, David L.; Taatjes, Craig A.; Rotavera, Brandon

Oxiranes are a class of cyclic ethers formed in abundance during low-temperature combustion of hydrocarbons and biofuels, either via chain-propagating steps that occur from unimolecular decomposition of β-hydroperoxyalkyl radicals (β-˙QOOH) or from reactions of HÒO with alkenes. The cis- and trans-isomers of 2,3-dimethyloxirane are intermediates of n-butane oxidation, and while rate coefficients for β-˙QOOH → 2,3-dimethyloxirane + OH are reported extensively, subsequent reaction mechanisms of the cyclic ethers are not. As a result, chemical kinetics mechanisms commonly adopt simplified chemistry to describe the consumption of 2,3-dimethyloxirane by convoluting several elementary reactions into a single step, which may introduce mechanism truncation error—uncertainty derived from missing or incomplete chemistry. The present research examines the isomerdependence of 2,3-dimethyloxirane reaction mechanisms in support of ongoing efforts to minimize mechanism truncation error. Reaction mechanisms are inferred via the detection of products from Cl-initiated oxidation of both cis-2,3-dimethyloxirane and trans-2,3-dimethyloxirane using multiplexed photoionization mass spectrometry (MPIMS). The experiments were conducted at 10 Torr and temperatures of 650 K and 800 K. To complement the experiments, the enthalpies of stationary points on the ˙R + O2 surfaces were computed at the ccCA-PS3 level of theory. In total, 28 barrier heights were computed on the 2,3-dimethyloxiranylperoxy surfaces. Two notable aspects are low-lying pathways that form resonance-stabilized ketohydroperoxide-type radicals caused by ˙QOOH ring-opening when the unpaired electron is localized adjacent to the ether group, and cis-trans isomerization of ˙R and ˙QOOH radicals, via inversion, which enable reaction pathways otherwise restricted by stereochemistry. Several species were identified in the MPIMS experiments from ring opening of 2,3-dimethyloxiranyl radicals. Neither of the two conjugate alkene isomers prototypical of ˙R + O2 reactions were detected. Products were also identified from decomposition of ketohydroperoxide-type radicals. The present work provides the first analysis of 2,3-dimethyloxirane oxidation chemistry and reveals that consumption pathways are complex and require the expansion of submechanisms in chemical kinetics mechanisms.

More Details

Criegee intermediates: production, detection and reactivity

International Reviews in Physical Chemistry

Chhantyal-Pun, Rabi; Khan, M.A.H.; Taatjes, Craig A.; Percival, Carl J.; Orr-Ewing, Andrew J.; Shallcross, Dudley E.

In the context of tropospheric chemistry, Criegee intermediates denote carbonyl oxides with biradical/zwitterionic character (R1R2COO) that form during the ozonolysis of alkenes. First discovered almost 70 years ago, stabilised versions of Criegee intermediates formed via collisional removal of excess energy have interesting kinetic and mechanistic properties. The direct production and detection of these intermediates were not reported in the literature until 2008. However, recent advances in their generation through the ultraviolet irradiation of the corresponding diiodoalkanes in excess O2 and detection by various spectroscopic techniques (photoionisation, ultraviolet, infrared, microwave and mass spectrometry) have shown that these species can react rapidly with closed-shell molecules, in many cases at or exceeding the classical gas-kinetic limit, via multiple reaction pathways. These reactions can be complex, and laboratory measurements of products and the temperature and pressure dependence of the reaction kinetics have also revealed unusual behaviour. The potential role of these intermediates in atmospheric chemistry is significant, altering models of the oxidising capacity of the Earth's atmosphere and the rate of generation of secondary organic aerosol.

More Details

Experimental Evidence of Dioxole Unimolecular Decay Pathway for Isoprene-Derived Criegee Intermediates

Journal of Physical Chemistry A

Vansco, Michael F.; Caravan, Rebecca L.; Zuraski, Kristen; Winiberg, Frank A.F.; Au, Kendrew; Trongsiriwat, Nisalak; Walsh, Patrick J.; Osborn, David L.; Percival, Carl J.; Khan, M.A.H.; Shallcross, Dudley E.; Taatjes, Craig A.; Lester, Marsha I.

Ozonolysis of isoprene, one of the most abundant volatile organic compounds emitted into the Earth's atmosphere, generates two four-carbon unsaturated Criegee intermediates, methyl vinyl ketone oxide (MVK-oxide) and methacrolein oxide (MACR-oxide). The extended conjugation between the vinyl substituent and carbonyl oxide groups of these Criegee intermediates facilitates rapid electrocyclic ring closures that form five-membered cyclic peroxides, known as dioxoles. This study reports the first experimental evidence of this novel decay pathway, which is predicted to be the dominant atmospheric sink for specific conformational forms of MVK-oxide (anti) and MACR-oxide (syn) with the vinyl substituent adjacent to the terminal O atom. The resulting dioxoles are predicted to undergo rapid unimolecular decay to oxygenated hydrocarbon radical products, including acetyl, vinoxy, formyl, and 2-methylvinoxy radicals. In the presence of O2, these radicals rapidly react to form peroxy radicals (ROO), which quickly decay via carbon-centered radical intermediates (QOOH) to stable carbonyl products that were identified in this work. The carbonyl products were detected under thermal conditions (298 K, 10 Torr He) using multiplexed photoionization mass spectrometry (MPIMS). The main products (and associated relative abundances) originating from unimolecular decay of anti-MVK-oxide and subsequent reaction with O2 are formaldehyde (88 ± 5%), ketene (9 ± 1%), and glyoxal (3 ± 1%). Those identified from the unimolecular decay of syn-MACR-oxide and subsequent reaction with O2 are acetaldehyde (37 ± 7%), vinyl alcohol (9 ± 1%), methylketene (2 ± 1%), and acrolein (52 ± 5%). In addition to the stable carbonyl products, the secondary peroxy chemistry also generates OH or HO2 radical coproducts.

More Details

Investigating the atmospheric sources and sinks of perfluorooctanoic acid using a global chemistry transport model

Atmosphere

Holland, Rayne; Khan, M.A.H.; Chhantyal-Pun, Rabi; Orr-Ewing, Andrew J.; Percival, Carl J.; Taatjes, Craig A.; Shallcross, Dudley E.

Perfluorooctanoic acid, PFOA, is one of the many concerning pollutants in our atmosphere; it is highly resistant to environmental degradation processes, which enables it to accumulate biologically. With direct routes of this chemical to the environment decreasing, as a consequence of the industrial phase out of PFOA, it has become more important to accurately model the effects of indirect production routes, such as environmental degradation of precursors; e.g., fluorotelomer alcohols (FTOHs). The study reported here investigates the chemistry, physical loss and transport of PFOA and its precursors, FTOHs, throughout the troposphere using a 3D global chemical transport model, STOCHEM-CRI. Moreover, this investigation includes an important loss process of PFOA in the atmosphere via the addition of the stabilised Criegee intermediates, hereby referred to as the "Criegee Field. " Whilst reaction with Criegee intermediates is a significant atmospheric loss process of PFOA, it does not result in its permanent removal from the atmosphere. The atmospheric fate of the resultant hydroperoxide product from the reaction of PFOA and Criegee intermediates resulted in a ≈0.04 Gg year-1 increase in the production flux of PFOA. Furthermore, the physical loss of the hydroperoxide product from the atmosphere (i.e., deposition), whilst decreasing the atmospheric concentration, is also likely to result in the reformation of PFOA in environmental aqueous phases, such as clouds, precipitation, oceans and lakes. As such, removal facilitated by the "Criegee Field" is likely to simply result in the acceleration of PFOA transfer to the surface (with an expected decrease in PFOA atmospheric lifetime of ≈10 h, on average from ca. ≈80 h without Criegee loss to 70 h with Criegee loss).

More Details
Results 1–25 of 236
Results 1–25 of 236