Publications

Results 26–50 of 51

Search results

Jump to search filters

Centrifugal microfluidic platform for ultrasensitive detection of botulinum toxin

Analytical Chemistry

Koh, Chung Y.; Schaff, Ulrich Y.; Piccini, Matthew E.; Stanker, Larry H.; Cheng, Luisa W.; Ravichandran, Easwaran; Singh, Bal R.; Sommer, Greg J.; Singh, Anup K.

We present an innovative centrifugal microfluidic immunoassay platform (SpinDx) to address the urgent biodefense and public health need for ultrasensitive point-of-care/incident detection of botulinum toxin. The simple, sample-to-answer centrifugal microfluidic immunoassay approach is based on binding of toxins to antibody-laden capture particles followed by sedimentation of the particles through a density-media in a microfluidic disk and quantification by laser-induced fluorescence. A blind, head-to-head comparison study of SpinDx versus the gold-standard mouse bioassay demonstrates 100-fold improvement in sensitivity (limit of detection = 0.09 pg/mL), while achieving total sample-to-answer time of <30 min with 2-∼L required volume of the unprocessed sample. We further demonstrate quantification of botulinum toxin in both exogeneous (human blood and serum spiked with toxins) and endogeneous (serum from mice intoxicated via oral, intranasal, and intravenous routes) samples. SpinDx can analyze, without any sample preparation, multiple sample types including whole blood, serum, and food. It is readily expandable to additional analytes as the assay reagents (i.e., the capture beads and detection antibodies) are disconnected from the disk architecture and the reader, facilitating rapid development of new assays. SpinDx can also serve as a general-purpose immunoassay platform applicable to diagnosis of other conditions and diseases.

More Details

A Portable Immunoassay Platform for Multiplexed Detection of Biotoxins in Clinical and Environmental Samples

Sandia journal manuscript; Not yet accepted for publication

Koh, Chung Y.; Piccini, Matthew E.; Schaff, Ulrich Y.; Stanker, Larry H.; Cheng, Luisa W.; Ravichandran, Easwaran; Singh, Bal-Ram; Sommer, Greg J.; Singh, Anup K.

Multiple cases of attempted bioterrorism events using biotoxins have highlighted the urgent need for tools capable of rapid screening of suspect samples in the field (e.g., mailroom and public events). We present a portable microfluidic device capable of analyzing environmental (e.g., white powder), food (e.g., milk) and clinical (e.g., blood) samples for multiplexed detection of biotoxins. The device is rapid (<15-30 min sample-to-answer), sensitive (< 0.08 pg/mL detection limit for botulinum toxin), multiplexed (up to 64 parallel assays) and capable of analyzing small volume samples (< 20 μL total sample input). The immunoassay approach (SpinDx) is based on binding of toxins in a sample to antibody-laden capture particles followed by sedimentation of particles through a density-media in a microfluidic disk and quantification using a laser-induced fluorescence detector. A direct, blinded comparison with a gold standard ELISA revealed a 5-fold more sensitive detection limit for botulinum toxin while requiring 250-fold less sample volume and a 30 minute assay time with a near unity correlation. A key advantage of the technique is its compatibility with a variety of sample matrices with no additional sample preparation required. Ultrasensitive quantification has been demonstrated from direct analysis of multiple clinical, environmental and food samples, including white powder, whole blood, saliva, salad dressing, whole milk, peanut butter, half and half, honey, and canned meat. We believe that this device can met an urgent need in screening both potentially exposed people as well as suspicious samples in mail-rooms, airports, public sporting venues and emergency rooms. The general-purpose immunodiagnostics device can also find applications in screening of infectious and systemic diseases or serve as a lab device for conducting rapid immunoassays.

More Details

Enhanced vector borne disease surveillance of California Culex mosquito populations reveals spatial and species-specific barriers of infection

Vandernoot, Victoria A.; Curtis, Deanna J.; Koh, Chung Y.; Brodsky, Benjamin H.; Lane, Todd

Monitoring infections in vectors such as mosquitoes,sand flies, tsetse flies, and ticks to identify human pathogens may serve as an early warning detection system to direct local government disease preventive measures. One major hurdle in detection is the ability to screen large numbers of vectors for human pathogens without the use of genotype-specific molecular techniques. Next generation sequencing (NGS) provides an unbiased platform capable of identifying known and unknown pathogens circulating within a vector population, but utilizing this technology is time-consuming and costly for vector-borne disease surveillance programs. To address this we developed cost-effective Ilumina® RNA-Seq library preparation methodologiesin conjunction with an automated computational analysis pipeline to characterize the microbial populations circulating in Culex mosquitoes (Culex quinquefasciatus, Culex quinquefasciatus/pipiens complex hybrids, and Culex tarsalis) throughout California. We assembled 20 novel and well-documented arboviruses representing members of Bunyaviridae, Flaviviridae, Ifaviridae, Mesoniviridae, Nidoviridae, Orthomyxoviridae, Parvoviridae, Reoviridae, Rhabdoviridae, Tymoviridae, as well as several unassigned viruses. In addition, we mapped mRNA species to divergent species of trypanosoma and plasmodium eukaryotic parasites and characterized the prokaryotic microbial composition to identify bacterial transcripts derived from wolbachia, clostridium, mycoplasma, fusobacterium and campylobacter bacterial species. We utilized these microbial transcriptomes present in geographically defined Culex populations to define spatial and mosquito species-specific barriers of infection. The virome and microbiome composition identified in each mosquito pool provided sufficient resolution to determine both the mosquito species and the geographic region in California where the mosquito pool originated. This data provides insight into the complexity of microbial species circulating in medically important Culex mosquitoes and their potential impact on the transmission of vector-borne human/veterinary pathogens in California.

More Details
Results 26–50 of 51
Results 26–50 of 51