Publications

Results 26–50 of 271

Search results

Jump to search filters

Evaluation of the PhaseNet Model Applied to the IMS Seismic Network

Garcia, Jorge A.; Heck, Stephen H.; Young, Christopher J.; Brogan, Ronald

Producing a complete and accurate set of signal detections is essential for automatically building and characterizing seismic events of interest for nuclear explosion monitoring. Signal detection algorithms have been an area of research for decades, but still produce large quantities of false detections and misidentify real signals that must be detected to produce a complete global catalog of events of interest. Deep learning methods have shown promising capabilities in effectively characterizing seismic signals for complex tasks such as identifying phase arrival times. We use the PhaseNet model, a UNet-based Neural Network, trained on local distance data from northern California to predict seismic arrivals on data from the International Monitoring System (IMS) global network. We use an analyst-curated bulletin generated from this data set to compare the performance of PhaseNet to that of the Short-Term Average/Long-Term Average (STA/LTA) algorithm. We find that PhaseNet has the potential of outperforming traditional processing methods and recommend the training of a new model with the IMS data to achieve optimal performance.

More Details

Deep Learning Denoising Applied to Regional Distance Seismic Data in Utah

Bulletin of the Seismological Society of America

Tibi, Rigobert T.; Hammond, Patrick H.; Brogan, Ronald; Young, Christopher J.; Koper, Keith

Seismic waveform data are generally contaminated by noise from various sources. Suppressing this noise effectively so that the remaining signal of interest can be successfully exploited remains a fundamental problem for the seismological community. To date, the most common noise suppression methods have been based on frequency filtering. These methods, however, are less effective when the signal of interest and noise share similar frequency bands. Inspired by source separation studies in the field of music information retrieval (Jansson et al., 2017) and a recent study in seismology (Zhu et al., 2019), we implemented a seismic denoising method that uses a trained deep convolutional neural network (CNN) model to decompose an input waveform into a signal of interest and noise. In our approach, the CNN provides a signal mask and a noise mask for an input signal. The short-time Fourier transform (STFT) of the estimated signal is obtained by multiplying the signal mask with the STFT of the input signal. To build and test the denoiser, we used carefully compiled signal and noise datasets of seismograms recorded by the University of Utah Seismograph Stations network. Results of test runs involving more than 9000 constructed waveforms suggest that on average the denoiser improves the signal-to-noise ratios (SNRs) by ~5 db, and that most of the recovered signal waveforms have high similarity with respect to the target waveforms (average correlation coefficient of ~0.80) and suffer little distortion. Application to real data suggests that our denoiser achieves on average a factor of up to ~2-5 improvement in SNR over band-pass filtering and can suppress many types of noise that band-pass filtering cannot. For individual waveforms, the improvement can be as high as ~15 db.

More Details

Deep learning denoising applied to regional distance seismic data in Utah

Bulletin of the Seismological Society of America

Tibi, Rigobert T.; Hammond, Patrick H.; Brogan, Ronald; Young, Christopher J.; Koper, Keith

Seismic waveform data are generally contaminated by noise from various sources. Suppressing this noise effectively so that the remaining signal of interest can be successfully exploited remains a fundamental problem for the seismological community. To date, the most common noise suppression methods have been based on frequency filtering. These methods, however, are less effective when the signal of interest and noise share similar frequency bands. Inspired by source separation studies in the field of music information retrieval (Jansson et al., 2017) and a recent study in seismology (Zhu et al., 2019), we implemented a seismic denoising method that uses a trained deep convolutional neural network (CNN) model to decompose an input waveform into a signal of interest and noise. In our approach, the CNN provides a signal mask and a noise mask for an input signal. The short-time Fourier transform (STFT) of the estimated signal is obtained by multiplying the signal mask with the STFT of the input signal. To build and test the denoiser, we used carefully compiled signal and noise datasets of seismograms recorded by the University of Utah Seismograph Stations network. Results of test runs involving more than 9000 constructed waveforms suggest that on average the denoiser improves the signal-to-noise ratios (SNRs) by ∼ 5 dB, and that most of the recovered signal waveforms have high similarity with respect to the target waveforms (average correlation coefficient of ∼ 0:80) and suffer little distortion. Application to real data suggests that our denoiser achieves on average a factor of up to ∼ 2–5 improvement in SNR over band-pass filtering and can suppress many types of noise that band-pass filtering cannot. For individual waveforms, the improvement can be as high as ∼ 15 dB.

More Details

Generating Uncertainty Distributions for Seismic Signal Onset Times

Bulletin of the Seismological Society of America

Peterson, Matthew G.; Stracuzzi, David J.; Young, Christopher J.; Vollmer, Charles V.; Brogan, Ronald

Signal arrival-time estimation plays a critical role in a variety of downstream seismic analyses, including location estimation and source characterization. Any arrival-time errors propagate through subsequent data-processing results. In this article, we detail a general framework for refining estimated seismic signal arrival times along with full estimation of their associated uncertainty. Using the standard short-term average/long-term average threshold algorithm to identify a search window, we demonstrate how to refine the pick estimate through two different approaches. In both cases, new waveform realizations are generated through bootstrap algorithms to produce full a posteriori estimates of uncertainty of onset arrival time of the seismic signal. The onset arrival uncertainty estimates provide additional data-derived information from the signal and have the potential to influence seismic analysis along several fronts.

More Details

Applying Compression-Based Metrics to Seismic Data in Support of Global Nuclear Explosion Monitoring

Matzen, Laura E.; Ting, Christina T.; Field, Richard V.; Morrow, J.D.; Brogan, Ronald; Young, Christopher J.; Zhou, Angela; Trumbo, Michael C.; Coram, Jamie L.

The analysis of seismic data for evidence of possible nuclear explosion testing is a critical global security mission that relies heavily on human expertise to identify and mark seismic signals embedded in background noise. To assist analysts in making these determinations, we adapted two compression distance metrics for use with seismic data. First, we demonstrated that the Normalized Compression Distance (NCD) metric can be adapted for use with waveform data and can identify the arrival times of seismic signals. Then we tested an approximation for the NCD called Sliding Information Distance (SLID), which can be computed much faster than NCD. We assessed the accuracy of the SLID output by comparing it to both the Akaike Information Criterion (AIC) and the judgments of expert seismic analysts. Our results indicate that SLID effectively identifies arrival times and provides analysts with useful information that can aid their analysis process.

More Details

A Multi-Instance learning Framework for Seismic Detectors

Ray, Jaideep R.; Wang, Fulton W.; Young, Christopher J.

In this report, we construct and test a framework for fusing the predictions of a ensemble of seismic wave detectors. The framework is drawn from multi-instance learning and is meant to improve the predictive skill of the ensemble beyond that of the individual detectors. We show how the framework allows the use of multiple features derived from the seismogram to detect seismic wave arrivals, as well as how it allows only the most informative features to be retained in the ensemble. The computational cost of the "ensembling" method is linear in the size of the ensemble, allowing a scalable method for monitoring multiple features/transformations of a seismogram. The framework is tested on teleseismic and regional p-wave arrivals at the IMS (International Monitoring System) station in Warramunga, NT, Australia and the PNSU station in University of Utah's monitoring network.

More Details

Applying Waveform Correlation to Mining Blasts Using a Global Sparse Network

Sundermier, Amy S.; Tibi, Rigobert T.; Young, Christopher J.

Agencies that monitor for underground nuclear tests are interested in techniques that automatically characterize mining blasts to reduce the human analyst effort required to produce high-quality event bulletins. Waveform correlation is effective in finding similar waveforms from repeating seismic events, including mining blasts. We report the results of an experiment that uses waveform templates recorded by multiple International Monitoring System stations of the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization for up to 10 years prior to the time period of interest to detect and identify mining blasts that occur during single weeks of study. We discuss approaches for template selection, threshold setting, and event detection that are specialized for mining blasts and a sparse, global network. We apply the approaches to two different weeks of study for each of two geographic regions, Wyoming and Scandinavia, to evaluate the potential for establishing a set of standards for waveform correlation processing of mining blasts that can be effective for operational monitoring systems with a sparse network. We compare candidate events detected with our processing methods to the Reviewed Event Bulletin of the International Data Centre to develop an intuition about potential reduction in analyst workload.

More Details

Applying Waveform Correlation to Mining Blasts Using a Global Sparse Network

Sundermier, Amy S.; Tibi, Rigobert T.; Young, Christopher J.

Agencies that monitor for underground nuclear tests are interested in techniques that automatically characterize mining blasts to reduce the human analyst effort required to produce high-quality event bulletins. Waveform correlation is effective in finding similar waveforms from repeating seismic events, including mining blasts. We report the results of an experiment that uses waveform templates recorded by multiple International Monitoring System stations of the Comprehensive Nuclear-Test-Ban Treaty for up to 10 years prior to detect and identify mining blasts that occur during single weeks of study. We discuss approaches for template selection, threshold setting, and event detection that are specialized for mining blasts and a sparse, global network. We apply the approaches to two different weeks of study for each of two geographic regions, Wyoming and Scandinavia, to evaluate the potential for establishing a set of standards for waveform correlation processing of mining blasts that can be effective for operational monitoring systems with a sparse network. We compare candidate events detected with our processing methods to the Reviewed Event Bulletin of the International Data Centre to develop an intuition about potential reduction in analyst workload.

More Details

Review of IDC XSEL for Sept 1 2019

Young, Christopher J.; Brogan, Ronald

This short report documents the review of the XSEL for September 1st, 2019. The XSEL process created 318 events overall. Seventy-two of those events were matched in the Standard Event List (SEL) and eleven of the events were matched in the Reviewed Event Bulletin (REB). There an addition 235 events, purported to be "NEW" events, not appearing in either SEL or REB. The NEW events were the major focus of this review, along with confirmation of the events listed in SEL and REB.

More Details
Results 26–50 of 271
Results 26–50 of 271