Publications

Results 1–25 of 50

Search results

Jump to search filters

Model Validation of Falling Particle Receivers With On-sun Experiments

AIP Conference Proceedings

Mills, Brantley M.; Albrecht, Kevin J.; Gonzalez-Portillo, Luis F.; Ho, Clifford K.

Falling particle receivers are a promising receiver design to couple with particle-based concentrating solar power to help meet future levelized cost of electricity targets in next generation systems. The thermal performance of receivers is critical to the economics of the overall system, and accurate models of particle receivers are necessary to predict the performance in all conditions. A model validation study was performed using falling particle receiver data recently collected at the National Solar Thermal Test Facility at Sandia National Laboratories. The particle outlet temperature, the thermal efficiency of the receiver, and the wind speed and direction around the receiver were measured in 26 steady-state experiments and compared to a corresponding receiver model. The results of this study showed improved agreement with the experimental data over past validation efforts but did not fully meet all predefined validation metrics. Future model improvements were identified to continue to strengthen the modeling capabilities.

More Details

Technoeconomics of Particle-based CSP Featuring Falling Particle Receivers with and without Active Heliostat Control

Mills, Brantley M.; Lee, Samuel; Gonzalez-Portillo, Luis F.; Ho, Clifford K.; Albrecht, Kevin J.

This report documents the results and conclusions of a recent project to understand the technoeconomics of utility-scale, particle-based concentrating solar power (CSP) facilities leveraging unique operational strategies. This project included two primary objectives. The first project objective was to build confidence in the modeling approaches applied to falling particle receivers (FPRs) including the effect s of wind. The second project objective was to create the necessary modeling capability to adequately predict and maximize the annual performance of utility-scale, particle-based CSP plants under anticipated conditions with and without active heliostat control. Results of an extensive model validation study provided the strongest evidence to date for the modeling strategies typically applied to FPRs, albeit at smaller receiver scales. This modeling strategy was then applied in a parametric study of candidate utility-scale FPRs, including both free-falling and multistage FPR concepts, to develop reduced order models for predicting the receiver thermal efficiency under anticipated environmental and operating conditions. Multistage FPRs were found to significantly improve receiver performance at utility-scales. These reduced order models were then leveraged in a sophisticated technoeconomic analysis to optimize utility-scale , particle-based CSP plants considering the potential of active heliostat control. In summary, active heliostat control did not show significant performance benefits to future utility-scale CSP systems though some benefit may still be realized in FPR designs with wide acceptance angles and/or with lower concentration ratios. Using the latest FPR technologies available, the levelized-cost of electricity was quantified for particle-based CSP facilities with nominal powers ranging from 5 MWe up to 100 MWe with many viable designs having costs < 0.06 $/kWh and local minimums occurring between ~25–35 MWe.

More Details

Effect of Quartz Aperture Covers on the Fluid Dynamics and Thermal Efficiency of Falling Particle Receivers

Journal of Solar Energy Engineering, Transactions of the ASME

Yue, Lindsey; Mills, Brantley M.; Christian, Joshua M.; Ho, Clifford K.

Falling particle receivers are an emerging technology for use in concentrating solar power systems. In this study, quartz half-shells are investigated for use as full or partial aperture covers to reduce receiver thermal losses. Quartz half-shell aperture covers offer the ability to minimally interfere with incoming solar radiation from the heliostat field while obstructing thermal radiation and advection from leaving the receiver cavity. The fluid dynamics and heat transfer of a receiver subdomain and surrounding air are modeled using ANSYS® FLUENT. We compare the percentage of total incident solar power lost due to conduction through the receiver walls, advective losses through the aperture, and radiation exiting the aperture. Contrary to expected outcomes, results show that quartz aperture covers can increase radiative losses and result in modest to nonexistent reductions in advective losses. The increased radiative losses are driven by elevated quartz half-shell temperatures and have the potential to be mitigated by active cooling and/or material selection. Quartz half-shell total transmissivity was measured experimentally using a radiometer and the National Solar Thermal Test Facility heliostat field with values up to 0.97 ± 0.01. Quartz half-shell aperture covers did not yield expected efficiency gains in numerical results due to increased radiative losses, but efficiency improvement in some numerical results and the performance of quartz half-shells subject to concentrated solar radiation suggest that quartz half-shell aperture covers should be investigated further.

More Details

Receiver design and On-Sun testing for G3P3-USA

AIP Conference Proceedings

Ho, Clifford K.; Schroeder, Nathan; Laubscher, Hendrik F.; Yue, Lindsey; Mills, Brantley M.; Shaeffer, Reid; Christian, Joshua M.; Albrecht, Kevin J.

This paper summarizes the evolution of the Gen 3 Particle Pilot Plant (G3P3) receiver design with the goal of reducing heat losses and increasing thermal efficiencies. New features that were investigated included aperture covers and shrouds, active airflow, multistage catch-and-release devices (stairs), and optimization of receiver cavity geometry. Simulations and ground-based testing showed that a reduced receiver volume and aperture shroud could reduce advective heat losses by ∼40 - 50%, and stairs could increase opacity and reduce backwall temperatures. The reduced volume receiver and stairs were selected for on-sun testing, and receiver efficiencies up to 80 - 90% were achieved in the current test campaign. The receiver thermal efficiency generally increased as a function of incident power and particle mass flow rates. In addition, particle outlet temperatures were maintained to within ±10 °C of a prescribed setpoint temperature up to ∼700 °C using a PID controller that adjusted the particle mass flow rate into the receiver in response to the measured particle outlet temperatures.

More Details

Gen 3 Particle Pilot Plant (G3P3) -- High-Temperature Particle System for Concentrating Solar Power (Phases 1 and 2)

Ho, Clifford K.; Sment, Jeremy N.; Albrecht, Kevin J.; Mills, Brantley M.; Schroeder, Nathan

The U.S. Department of Energy Solar Energy Technologies Office initiated the Generation 3 Concentrating Solar Power (CSP) program to achieve higher operating temperatures (>700 °C) to enable next-generation CSP high-temperature power cycles such as the supercritical CO2 (sCO2) Brayton Cycle. Three teams were selected to pursue high-temperature gas, liquid, and solid pathways for the heat-transfer media. Phases 1 and 2, which lasted from 2018 – 2020, consisted of design, modeling, and testing activities to further de-risk each of the technologies and develop a design for construction, commissioning, and operation of a pilot-scale facility in Phase 3 (2021 – 2024). This report summarizes the activities in Phases 1 and 2 for the solid-particle pathway led by Sandia National Laboratories. In Phases 1 and 2, Sandia successfully de-risked key elements of the proposed Gen 3 Particle Pilot Plant (G3P3) by improving the design, operation, and performance of key particle component technologies including the receiver, storage bins, particle-to-sCO2 heat exchanger, particle lift, and data acquisition and controls. Modeling and testing of critical components have led to optimized designs that meet desired performance metrics. Detailed drawings, piping and instrumentation diagrams, and process flow diagrams were generated for the integrated system, and structural analyses of the assembled tower structure were performed to demonstrate compliance with relevant codes and standards. Instrumentation and control systems of key subsystems were also demonstrated. Together with Bridgers & Paxton, Bohannan Huston, and Sandia Facilities, we have completed a 100% G3P3 tower design package with stamped engineering drawings suitable for construction bid in Phase 3.

More Details

Defining Computational Emissivity Uncertainty Over Large Temperature Scales Due to Surface Evolution

Journal of Verification, Validation and Uncertainty Quantification

Silva, Humberto; Mills, Brantley M.; Schroeder, Benjamin B.; Keedy, Ryan M.; Smith, Kyle D.

There is a dearth in the literature on how to capture the uncertainty generated by material surface evolution in thermal modeling. This leads to inadequate or highly variable uncertainty representations for material properties, specifically emissivity when minimal information is available. Inaccurate understandings of prediction uncertainties may lead decision makers to incorrect conclusions, so best engineering practices should be developed for this domain. In order to mitigate the aforementioned issues, this study explores different strategies to better capture the thermal uncertainty response of engineered systems exposed to fire environments via defensible emissivity uncertainty characterizations that can be easily adapted to a variety of use cases. Two unique formulations (one physics-informed and one mathematically based) are presented. The formulations and methodologies presented herein are not exhaustive but more so are a starting point and give the reader a basis for how to customize their uncertainty definitions for differing fire scenarios and materials. Finally, the impact of using this approach versus other commonly used strategies and the usefulness of adding rigor to material surface evolution uncertainty is demonstrated.

More Details

Active airflow for reducing advective and particle loss in falling particle receivers

AIP Conference Proceedings

Yue, Lindsey; Shaeffer, Reid; Mills, Brantley M.; Ho, Clifford K.

Two active airflow control methods are investigated to mitigate advective and particle losses from the open aperture of a falling particle receiver. Advective losses can be reduced via active airflow methods. However, in the case of once-through suction, energy lost as enthalpy of hot air due to active airflow needs to be minimized so that thermal efficiency can be maximized. In the case of forced air injection, a properly configured aerowindow can reduce advective losses substantially for calm conditions. Although some improvement is offered in windy conditions, an aerowindow in the presence of winds does not show an ability to mitigate advective losses to values achievable by an aerowindow in the absence of wind. The two active airflow methods considered in this paper both show potential for efficiency improvement, but the improvement many not be justified given the added complexity and cost of implementing an active airflow system. While active airflow methods are tractable for a 1 MWth cavity receiver with a 1 m square aperture, the scalability of these active airflow methods is questionable when considering commercial scale receivers with 10–20 m square apertures or larger.

More Details

Optimizing a falling particle receiver geometry using CFD simulations to maximize the thermal efficiency

AIP Conference Proceedings

Mills, Brantley M.; Schroeder, Benjamin B.; Yue, Lindsey; Shaeffer, Reid; Ho, Clifford K.

A strategy to optimize the thermal efficiency of falling particle receivers (FPRs) in concentrating solar power applications is described in this paper. FPRs are a critical component of a falling particle system, and receiver designs with high thermal efficiencies (~90%) for particle outlet temperatures > 700°C have been targeted for next generation systems. Advective losses are one of the most significant loss mechanisms for FPRs. Hence, this optimization aims to find receiver geometries that passively minimize these losses. The optimization strategy consists of a series of simulations varying different geometric parameters on a conceptual receiver design for the Generation 3 Particle Pilot Plant (G3P3) project using simplified CFD models to model the flow. A linear polynomial surrogate model was fit to the resulting data set, and a global optimization routine was then executed on the surrogate to reveal an optimized receiver geometry that minimized advective losses. This optimized receiver geometry was then evaluated with more rigorous CFD models, revealing a thermal efficiency of 86.9% for an average particle temperature increase of 193.6°C and advective losses less than 3.5% of the total incident thermal power in quiescent conditions.

More Details
Results 1–25 of 50
Results 1–25 of 50