Publications

Results 26–34 of 34

Search results

Jump to search filters

Automated generation of weld path trajectories

Journal of Ship Production

Ames, Arlo L.; Hinman-Sweeney, Elaine H.; Sizemore, John M.

AUTOmated GENeration of Control Programs for Robotic Welding of Ship Structure (AUTOGEN) is software that automates the planning and compiling of control programs for robotic welding of ship structure. The software works by evaluating computer representations of the ship design and the manufacturing plan. Based on this evaluation, AUTOGEN internally identifies and appropriately characterizes each weld. Then it constructs the robot motions necessary to accomplish the welds and determines for each the correct assignment of process control values. AUTOGEN generates these robot control programs completely without manual intervention or edits except to correct wrong or missing input data. Most ship structure assemblies are unique or at best manufactured only a few times. Accordingly, the high cost inherent in all previous methods of preparing complex control programs has made robot welding of ship structures economically unattractive to the U.S. shipbuilding industry. AUTOGEN eliminates the cost of creating robot control programs. With programming costs eliminated, capitalization of robots to weld ship structures becomes economically viable. Robot welding of ship structures will result in reduced ship costs, uniform product quality, and enhanced worker safety. Sandia National Laboratories and Northrop Grumman Ship Systems worked with the National Ship-building Research Program to develop a means of automated path and process generation for robotic welding. This effort resulted in the AUTOGEN program, which has successfully demonstrated automated path generation and robot control. Although the current implementation of AUTOGEN is optimized for welding applications, the path and process planning capability has applicability to a number of industrial applications, including painting, riveting, and adhesive delivery.

More Details

Cloud to CAD

Ames, Arlo L.

This paper documents work performed to convert scanned range data to CAD solid model representation. The work successfully developed surface fitting algorithms for quadric surfaces (e.g. plane, cone, cylinder, and sphere), and a segmentation algorithm based entirely on surface type, rather than on a differential metric like Gaussian curvature. Extraction of all CAD-required parameters for quadric surface representation was completed. Approximate face boundaries derived from the original point cloud were constructed. Work to extrapolate surfaces, compute exact edges and solid connectivity was begun, but left incomplete due to funding reductions. The surface fitting algorithms are robust in the face of noise and degenerate surface forms.

More Details

Motion Planning for a Direct Metal Deposition Rapid Prototyping System

Hensinger, David M.; Ames, Arlo L.; Kuhlmann, Joel L.

A motion planning strategy was developed and implemented to generate motion control instructions from solid model data for controlling a robotically driven solid free-form fabrication process. The planning strategy was tested using a PUMA type robot arm integrated into a LENS{trademark} (Laser Engineered Net Shape) system. Previous systems relied on a series of x, y, and z stages, to provide a minimal coordinated motion control capability. This limited the complexity of geometries that could be constructed. With the coordinated motion provided by a robotic arm, the system can produce three dimensional parts by ''writing'' material onto any face of existing material. The motion planning strategy relied on solid model geometry evaluation and exploited robotic positioning flexibility to allow the construction of geometrically complex parts. The integration of the robotic manipulator into the LENS{trademark} system was tested by producing metal parts directly from CAD models.

More Details

Immersive CAD

Ames, Arlo L.

This paper documents development of a capability for performing shape-changing editing operations on solid model representations in an immersive environment. The capability includes part- and assembly-level operations, with part modeling supporting topology-invariant and topology-changing modifications. A discussion of various design considerations in developing an immersive capability is included, along with discussion of a prototype implementation we have developed and explored. The project investigated approaches to providing both topology-invariant and topology-changing editing. A prototype environment was developed to test the approaches and determine the usefulness of immersive editing. The prototype showed exciting potential in redefining the CAD interface. It is fun to use. Editing is much faster and friendlier than traditional feature-based CAD software. The prototype algorithms did not reliably provide a sufficient frame rate for complex geometries, but has provided the necessary roadmap for development of a production capability.

More Details

Solid model design simplification

Ames, Arlo L.

This paper documents an investigation of approaches to improving the quality of Pro/Engineer-created solid model data for use by downstream applications. The investigation identified a number of sources of problems caused by deficiencies in Pro/Engineer`s geometric engine, and developed prototype software capable of detecting many of these problems and guiding users towards simplified, useable models. The prototype software was tested using Sandia production solid models, and provided significant leverage in attacking the simplification problem.

More Details

Analysis driven mechanical redesign

Ames, Arlo L.

This paper documents an effort to use a constrained nonlinear optimization package (OptdesX) to drive a feature-based mechanical design system (Pro/Engineer) in an optimization loop. Optimizations performed in this manner can maximally respect the design intent built into the model, and eliminate the need to propagate optimization results back to design, a flaw of most current optimization systems. A prototype system was built to demonstrate the capability; use of the prototype uncovered a variety of issues that should be addressed to productionize this kind of capability.

More Details

Liaison based assembly design

Ames, Arlo L.

Liaison Based Assembly Design extends the current information infrastructure to support design in terms of kinematic relationships between parts, or liaisons. These liaisons capture information regarding contact, degrees-of-freedom constraints and containment relationships between parts in an assembly. The project involved defining a useful collection of liaison representations, investigating their properties, and providing for maximum use of the data in downstream applications. We tested our ideas by implementing a prototype system involving extensions to Pro/Engineer and the Archimedes assembly planner. With an expanded product model, the design system is more able to capture design intent. When a product update is attempted, increased knowledge availability improves our ability to understand the effect of design changes. Manufacturing and analysis disciplines benefit from having liaison information available, so less time is wasted arguing over incomplete design specifications and our enterprise can be more completely integrated.

More Details
Results 26–34 of 34
Results 26–34 of 34