Publications

Results 76–100 of 100

Search results

Jump to search filters

Post-Fire Safe Shutdown Capability. An Inspector's Handbook. Draft Report

Muna, Alice B.; LaFleur, Chris B.

The Nuclear Regulatory Commission's (NRC) current fire protection regulatory framework was initiated in response to a cable fire that occurred at the Browns Ferry Nuclear Power Station in 1975. Following the issuance of several guidance documents, in 1981 the Commission codified deterministic requirements to provide reasonable assurance that fire would not jeopardize reactor safety (10 CFR 50.48 "Fire Protection" and Appendix R to 10 CFR 50). Since then, the results of plant operating experience, NRC inspection activities and cable fire testing programs have served to clarify the application of these requirements. In 2004, the NRC amended 10 CFR Part 50.48 to add a new subsection, 10 CFR 50.48(c), that endorses, with exceptions, the National Fire Protection Association's 805, "Performance-Based Standard for Fire Protection for Light Water Reactor Electric Generating Plants — 2001 Edition," as a voluntary alternative for demonstrating compliance with Appendix R. To date, approximately half of all operating plants have transitioned to a risk-informed approach under 10 CFR 50.48(c). Regardless of the selected approach, each operating nuclear power plant should establish a comprehensive fire protection program that includes features needed to minimize the likelihood and consequence of firesl. To achieve this objective, fire protection programs integrate the NRC's long-held safety concept of defense-in-depth (DID) by providing multiple barriers against potentially unacceptable consequences of fire. To minimize the frequency and size of fires, the first lines of defense include controls for fire prevention, such as controlling combustibles and ignition sources and fire mitigation features, such as fire detection and suppression systems. In the unlikely event that a fire should start and continue to grow in spite of these features, appropriate fire protection features, such as fire-rated barriers are provided as necessary to ensure the accomplishment of essential shutdown functions. This handbook was specifically developed for NRC inspectors that may be assigned to perform elements of Inspection Procedure (IP) 71111.05T, "Fire Protection (Triennial)," including, (a) "Protection of Safe Shutdown Capabilities," (e) "Alternative Shutdown Capability," and (f) "Circuit Analyses." Thus, the document concentrates solely on the final element of defense-in-depth— ensuring reactor safety will not be compromised in the event of a serious fire. In addition to describing how the NRC's regulatory framework has evolved since the Browns Ferry Fire, the handbook illustrates the content and scope of various analyses typically referenced in a plant's fire protection licensing basis and includes techniques and insights for assessing the plant's conformance to those criteria.

More Details

Failure analysis of LNG rail locomotives

2017 Joint Rail Conference, JRC 2017

LaFleur, Chris B.; Muna, Alice B.; Groth, Katrina G.; St Pierre, Matthew; Shurland, Melissa

This paper presents a risk assessment of a Liquefied Natural Gas (LNG)/diesel hybrid locomotive to identify and rank failures that could result in the release of LNG or Gaseous Natural Gas (GNG) to the surrounding environment. The Federal Railroad Administration (FRA) will analyze industry safety assessments of the proposed rail vehicles and the goal of this risk analysis is to identify and prioritize hazard scenarios so the FRA can ensure that they are properly addressed. For operational activities, a Failure Modes and Effects Analysis (FMEA) was performed to identify high risk failure modes. A modified hazard and operability study (HAZOP) methodology was used to analyze hazard scenarios for the maintenance activities for the LNG and Compressed Natural Gas (CNG) dual-fuel locomotives and the LNG tender car. Because refueling operations are highly dependent on human interactions, a human factors assessment was also performed on a sample refueling procedure to identify areas of improvement and identify best practices for analyzing future procedures. The FMEA resulted in the identification of 87 total failure modes for the operational phase, three of which were deemed to have a High risk priority, all involving the cryogenic storage tank. The HAZOP for the LNG tender resulted in the identification of eight credible hazard scenarios and the HAZOP for the locomotive in the maintenance mode identified 27 credible hazard scenarios. The high and medium risk failure modes and hazard scenarios should be prioritized for further analysis.

More Details

Instrumentation Cables Test Plan

Muna, Alice B.; LaFleur, Chris B.

The objective of this research is to better understand the fire-induced failure modes of instrumentation cables and evaluate the potential effect those failure modes could have on plant instrumentation circuits (i.e., circuit, component, and/or system response). In particular, this research is intended to better quantify the signal leakage that may occur before catastrophic failure in instrumentation circuits.

More Details

Instrumentation Cables Test Plan

Muna, Alice B.; LaFleur, Chris B.

A fire at a nuclear power plant (NPP) has the potential to damage structures, systems, and components important to safety, if not promptly detected and suppressed. At Browns Ferry Nuclear Power Plant on March 22, 1975, a fire in the reactor building damaged electrical power and control systems. Damage to instrumentation cables impeded the function of both normal and standby reactor coolant systems, and degraded the operators’ plant monitoring capability. This event resulted in additional NRC involvement with utilities to ensure that NPPs are properly protected from fire as intended by the NRC principle design criteria (i.e., general design criteria 3, Fire Protection). Current guidance and methods for both deterministic and performance based approaches typically make conservative (bounding) assumptions regarding the fire-induced failure modes of instrumentation cables and those failure modes effects on component and system response. Numerous fire testing programs have been conducted in the past to evaluate the failure modes and effects of electrical cables exposed to severe thermal conditions. However, that testing has primarily focused on control circuits with only a limited number of tests performed on instrumentation circuits. In 2001, the Nuclear Energy Institute (NEI) and the Electric Power Research Institute (EPRI) conducted a series of cable fire tests designed to address specific aspects of the cable failure and circuit fault issues of concern1. The NRC was invited to observe and participate in that program. The NRC sponsored Sandia National Laboratories to support this participation, whom among other things, added a 4-20 mA instrumentation circuit and instrumentation cabling to six of the tests. Although limited, one insight drawn from those instrumentation circuits tests was that the failure characteristics appeared to depend on the cable insulation material. The results showed that for thermoset insulated cables, the instrument reading tended to drift and fluctuate, while the thermoplastic insulated cables, the instrument reading fell off-scale rapidly. From an operational point of view, the latter failure characteristics would likely be identified as a failure from the effects of fire, while the former may result in inaccurate readings.

More Details

Fire Protection Engineering Design Brief Template. Hydrogen Refueling Station

LaFleur, Chris B.; Groth, Katrina G.; Muna, Alice B.

Building a hydrogen infrastructure system is critical to supporting the development of alternate- fuel vehicles. This report provides a methodology for implementing a performance-based design of an outdoor hydrogen refueling station that does not meet specific prescriptive requirements in NFPA 2, The Hydrogen Technologies Code . Performance-based designs are a code-compliant alternative to meeting prescriptive requirements. Compliance is demonstrated by comparing a prescriptive-based fueling station design with a performance-based design approach using Quantitative Risk Assessment (QRA) methods and hydrogen risk assessment tools. This template utilizes the Sandia-developed QRA tool, Hydrogen Risk Analysis Models (HyRAM), which combines reduced-order deterministic models that characterize hydrogen release and flame behavior with probabilistic risk models to quantify risk values. Each project is unique and this template is not intended to account for site-specific characteristics. Instead, example content and a methodology are provided for a representative hydrogen refueling site which can be built upon for new hydrogen applications.

More Details

LNG Safety Assessment Evaluation Methods

Muna, Alice B.; LaFleur, Chris B.

Sandia National Laboratories evaluated published safety assessment methods across a variety of industries including Liquefied Natural Gas (LNG), hydrogen, land and marine transportation, as well as the US Department of Defense (DOD). All the methods were evaluated for their potential applicability for use in the LNG railroad application. After reviewing the documents included in this report, as well as others not included because of repetition, the Department of Energy (DOE) Hydrogen Safety Plan Checklist is most suitable to be adapted to the LNG railroad application. This report was developed to survey industries related to rail transportation for methodologies and tools that can be used by the FRA to review and evaluate safety assessments submitted by the railroad industry as a part of their implementation plans for liquefied or compressed natural gas storage ( on-board or tender) and engine fueling delivery systems. The main sections of this report provide an overview of various methods found during this survey. In most cases, the reference document is quoted directly. The final section provides discussion and a recommendation for the most appropriate methodology that will allow efficient and consistent evaluations to be made. The DOE Hydrogen Safety Plan Checklist was then revised to adapt it as a methodology for the Federal Railroad Administration’s use in evaluating safety plans submitted by the railroad industry.

More Details
Results 76–100 of 100
Results 76–100 of 100