Publications

6 Results

Search results

Jump to search filters

Size effects on the thermal conductivity of amorphous silicon thin films

Physical Review B

Foulk, James W.; Braun, Jeffrey L.; Baker, Christopher H.; Elahi, Mirza; Artyushkova, Kateryna; Norris, Pamela M.; Leseman, Zayd C.; Gaskins, John T.; Hopkins, Patrick E.

We investigate thickness-limited size effects on the thermal conductivity of amorphous silicon thin films ranging from 3 to 1636 nm grown via sputter deposition. While exhibiting a constant value up to ∼100 nm, the thermal conductivity increases with film thickness thereafter. The thickness dependence we demonstrate is ascribed to boundary scattering of long wavelength vibrations and an interplay between the energy transfer associated with propagating modes (propagons) and nonpropagating modes (diffusons). A crossover from propagon to diffuson modes is deduced to occur at a frequency of ∼1.8 THz via simple analytical arguments. These results provide empirical evidence of size effects on the thermal conductivity of amorphous silicon and systematic experimental insight into the nature of vibrational thermal transport in amorphous solids.

More Details

Thermal conductivity of tubrostratic carbon nanofiber networks

Journal of Heat Transfer

Foulk, James W.; Leseman, Zayd C.; Saltonstall, Christopher B.; Bauer, Matthew L.; Hopkins, Patrick E.; Norris, Pamela M.

Composite material systems composed of a matrix of nano materials can achieve combinations of mechanical and thermophysical properties outside the range of traditional systems. While many reports have studied the intrinsic thermal properties of individual carbon fibers, to be useful in applications in which thermal stability is critical, an understanding of heat transport in composite materials is required. In this work, air/ carbon nano fiber networks are studied to elucidate the system parameters influencing thermal transport. Sample thermal properties are measured with varying initial carbon fiber fill fraction, environment pressure, loading pressure, and heat treatment temperature through a bidirectional modification of the 3ω technique. The nanostructures of the individual fibers are characterized with small angle x-ray scattering and Raman spectroscopy providing insight to individual fiber thermal conductivity. Measured thermal conductivity varied from 0.010 W/(m K) to 0.070 W/(m K). An understanding of the intrinsic properties of the individual fibers and the interactions of the two phase composite is used to reconcile low measured thermal conductivities with predictive modeling. This methodology can be more generally applied to a wide range of fiber composite materials and their applications.

More Details
6 Results
6 Results