Effects of accelerated aging on RP-2 EBWs
Abstract not provided.
Abstract not provided.
An optical sensor system has been developed for the autonomous monitoring of NO{sub 2} evolution in energetic material aging studies. The system is minimally invasive, requiring only the presence of a small sensor film within the aging chamber. The sensor material is a perylene/PMMA film that is excited by a blue LED light source and the fluorescence detected with a CCD spectrometer. Detection of NO{sub 2} gas is done remotely through the glass window of the aging chamber. Irreversible reaction of NO{sub 2} with perylene, producing the non-fluorescent nitroperylene, provides the optical sensing scheme. The rate of fluorescence intensity loss over time can be modeled using a numerical solution to the coupled diffusion and a nonlinear chemical reaction problem to evaluate NO{sub 2} concentration levels. The light source, spectrometer, spectral acquisition, and data processing were controlled through a Labivew program run by a laptop PC. Due to the long times involved with materials aging studies the system was designed to turn on, warm up, acquire data, power itself off, then recycle at a specific time interval. This allowed the monitoring of aging HE material over the period of several weeks with minimal power consumption and stable LED light output. Despite inherent problems with gas leakage of the aging chamber they were able to test the sensor system in the field under an accelerated aging study of rocket propellant. They found that the propellant evolved NO{sub 2} at a rate that yielded a concentration of between 10 and 100 ppm. The sensor system further revealed that the propellant, over an aging period of 25 days, evolves NO{sub 2} with cyclic behavior between active and dormant periods.
Chemical detection of gaseous species at very low vapor pressures is possible for materials with very low, saturation vapor pressures. A saturation vapor pressure implies equilibrium with the solid or liquid phase of the material. Thus partitioning of the gaseous species into a phase such as a polymer, will result in a very large concentration of the species in the solid phase and greatly enhanced ability to detect this species. The concentration in the polymer of the species to be detected is limited by the volubility of the species in that phase. In this presentation we discuss such a situation were 2-nitro-diphenylamine (2NDPA) is detected in the gas phase at room temperature at the few parts per trillion level.