Local Monitoring of Underground Mining Explosions at Redmond Utah
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
SEG Technical Program Expanded Abstracts
We present a synthetic study investigating the resolution limits of Full Wavefield Inversion (FWI) when applied to data generated from a visco-TTI-elastic (VTE) model. We compare VTE inversion having fixed Q and TTI, with acoustic inversion of acoustically generated data and elastic inversion of elastically generated data.
SEG Technical Program Expanded Abstracts
The need to better represent the material properties within the earth's interior has driven the development of higherfidelity physics, e.g., visco-tilted-transversely-isotropic (visco- TTI) elastic media and material interfaces, such as the ocean bottom and salt boundaries. This is especially true for full waveform inversion (FWI), where one would like to reproduce the real-world effects and invert on unprocessed raw data. Here we present a numerical formulation using a Discontinuous Galerkin (DG) finite-element (FE) method, which incorporates the desired high-fidelity physics and material interfaces. To offset the additional costs of this material representation, we include a variety of techniques (e.g., non-conformal meshing, and local polynomial refinement), which reduce the overall costs with little effect on the solution accuracy.