Exposure testing was performed on CoCrFeMnNi equiatomic high entropy alloy (HEA) produced via directed energy deposition additive manufacturing in NaNO3-KNO3 (60-40 wt%) molten salt at 500 °C for 50 h to evaluate the corrosion performance and oxide film chemistry of the HEA. Potentiodynamic electrochemical corrosion testing, scanning electron microscopy, focused ion beam milling coupled with energy dispersive spectroscopy, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and inductively coupled plasma optical emission spectroscopy were used to analyze the corrosion behavior and chemistry of the HEA/nitrate molten salt system. The CoCrFeMnNi HEA exhibited a higher passive current density during potentiodynamic polarization testing than steel alloys SS316L and 4130 and the high-Ni alloy 800 H in identical conditions. The oxide film was primarily composed of a (Mn,Co,Ni)Fe2O4 spinel with a vertical plate-like morphology at the surface. Cr and Ni were found to be totally depleted at the outer surface of the oxide and dissolved in high concentrations in the molten salt. While Cr was expected to dissolve into the molten salt, the high concentration of dissolved Ni has not been observed with traditional alloys, suggesting that Ni is less stable in the spinel when Mn and Co are present.
This study investigates the mechanical and corrosion properties of as-built and annealed equiatomic CoCrFeMnNi alloy produced by laser-based directed energy deposition (DED) Additive Manufacturing (AM). The high cooling rates of DED produced a single-phase, cellular microstructure with cells on the order of 4 μm in diameter and inter-cellular regions that were enriched in Mn and Ni. Annealing created a chemically homogeneous recrystallized microstructure with a high density of annealing twins. The average yield strength of the as-built condition was 424 MPa and exceeded the annealed condition (232 MPa), however; the strain hardening rate was lower for the as-built material stemming from higher dislocation density associated with DED parts and the fine cell size. In general, the yield strength, ultimate tensile strength, and elongation-to-failure for the as-built material exceeded values from previous studies that explored other AM techniques to produce the CoCrFeMnNi alloy. Ductile fracture occurred for all specimens with dimple initiation associated with nanoscale oxide inclusions. The breakdown potential (onset of pitting corrosion) was similar for the as-built and annealed conditions at 0.40 VAg/AgCl when immersed in 0.6 M NaCl. Pit morphology/propagation for the as-built condition exhibited preferential corrosion of inter-cellular Ni/Mn regions leading to a tortuous pit bottom and cover, while the annealed conditions pits resembled lacy pits similar to 304 L steel. A passive oxide film depleted in Cr cations with substantial incorporation of Mn cations is proposed as the primary mechanism for local corrosion susceptibility of the CoCrFeMnNi alloy.
This progress report describes work done in FY19 at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of spent nuclear fuel (SNF). Of particular concern is stress corrosion cracking (SCC), by which a through-wall crack could potentially form in a canister outer wall over time intervals that are shorter than possible dry storage times. Work in FY19 refined our understanding of the chemical and physical environment on canister surfaces and evaluated the relationship between chemical and physical environment and the form and extent of corrosion that occurs.
A preliminary study on the microstructural characteristics and stress corrosion cracking susceptibility of a friction stir welded (FSW) 304L stainless steel plate was carried out. The weld examined was characterized by several typical microstructural features of friction stir welds including a gradient of dynamically recrystallized microstructure with distinct material flow patterns reflective of the complex distribution of thermomechanical histories. Evidence of process-induced microstructural sensitization was lacking Immersion testing of the friction stir welded plate in boiling magnesium chloride solution indicated the FSW region was more susceptible to SCC than the base 304L material, especially along the weld toes. The microstructural origins of this SCC susceptibility are not clear, but it is likely driven by residual stress imparted by the welding process. Future work will focus on direct examination of the SCC damaged microstructure and residual stress of the weld zone to further clarify the operative characteristics controlling SCC susceptibility.
This study was initiated to quantify and characterize the uncertainty associated with the degradation mechanisms impacting normal dry storage operations for used nuclear fuel (UNF) and normal conditions of transport in support of the Spent Fuel and Waste Science & Technology Campaign (SFWST) and its effectiveness to rank the data needs and parameters of interest. This report describes the technical basis and guidance resulting from the development of software to perform uncertainty quantification (UQ) by developing and describing a holistic model that integrates the various processes controlling Atmospheric Stress Corrosion Cracking (ASCC) in the specific context of Interim Spent Fuel Storage Installations (ISFSIs). These processes include the daily and annual cycles of temperature and humidity associated with the environment, the deposition of chloride-containing aerosol particles, pit formation, pit-to-crack transition, and crack propagation.
For long-term storage, spent nuclear fuel (SNF) is placed in dry storage systems, commonly consisting of welded stainless steel canisters enclosed in ventilated overpacks. Choride-induced stress corrosion cracking (CISCC) of these canisters may occur due to the deliquescence of sea-salt aerosols as the canisters cool. Current experimental and modeling efforts to evaluate canister CISCC assume that the deliquescent brines, once formed, persist on the metal surface, without changing chemical or physical properties. Here we present data that show that magnesium chloride rich-brines, which form first as the canisters cool and sea-salts deliquesce, are not stable at elevated temperatures, degassing HCl and converting to solid carbonates and hydroxychloride phases, thus limiting conditions for corrosion. Moreover, once pitting corrosion begins on the metal surface, oxygen reduction in the cathode region surrounding the pits produces hydroxide ions, increasing the pH under some experimental conditions, leads to precipitation of magnesium hydroxychloride hydrates. Because magnesium carbonates and hydroxychloride hydrates are less deliquescent than magnesium chloride, precipitation of these compounds causes a reduction in the brine volume on the metal surface, potentially limiting the extent of corrosion. If taken to completion, such reactions may lead to brine dry-out, and cessation of corrosion.
Photovoltaic (PV) power plants and their constituent components, by virtue of their application, are exposed to some of the harshest outdoor terrestrial environments. Most equipment is subject directly to the environment and myriad stresses (micro and macro environment). Other aspects including local site conditions, construction variability and quality, and maintenance practices also influence the likelihood of such hazards. Many discrete components, including PV modules, wires, connectors, wire management devices, combiner boxes, protection devices, inverters, and transformers, make up the PV generation system. While there are abundant data that illustrate PV modules and PV inverters to be the major contributors of PV system failures, the mentioned data illustrate the importance of minimizing failures in the often ignored components such as PV connectors, PV wires (both above and below ground), wire splices, fuses, fuse holders, fuse holder enclosures, and wire management devices. With the exception of PV fuses, these components predominantly use polymeric materials. Therefore, it is crucial to understand the typical materials used in components, degradation processes and mechanisms leading to component failure, and their impact on system performance or failure. It further provides some practical considerations, approaches, and methods in addressing the problems with practical solutions in the design to assure the performance of the PV plant over the intended design lifetime.
This progress report describes work done in FY18 at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of spent nuclear fuel (SNF). The work focuses on stress corrosion cracking (SCC), the only mechanism by which a through-wall crack could potentially form in a canister outer wall over time intervals that are shorter than possible dry storage times. Work in FY18 continued several studies initiated in FY17 that are aimed at refining the understanding of the chemical and physical environment on canister surfaces, and evaluating the relationship between chemical and physical environment and the form and extent of corrosion that occurs. The SNL canister environment work focused on evaluating the stability of sea-salt deliquescent brines on the heated canister surface; an additional opportunity to analyze dusts sampled from an inservice spent nuclear fuel storage canister also arose. The SNL corrosion work focused predominantly on pitting corrosion, a necessary precursor for SCC, and process of pit-to-crack transition. SNL is collaborating with several university partners to investigate SCC crack growth experimentally, providing guidance for design and interpretation of experiments. The scope of these efforts targets near-marine Independent Spent Fuel Storage Installation environments which are generally considered to be most aggressive for pitting and SCC. Work to define the chemical and physical environment that could develop on storage canister surfaces in near-marine environments included experiments to evaluate the thermal stability of magnesium chloride brines, representative of the first brines to form when sea-salts deliquesce, with the specific goal of understanding and interpreting results of sea-salt and magnesium chloride corrosion experiments carried out under accelerated conditions. The experiments showed that magnesium chloride brines, and by extension, low RH sea-salt deliquescent brines, are not stable at elevated temperatures, losing chloride via degassing of HC1 and conversion to Mg-hydroxychlorides and carbonates. The experiments were carried out on an inert substrate to eliminate the effects of corrosion reactions, simulating brine stabilities in the absence of, or prior to, corrosion. Moreover, analysis of salts recovered from actively corroding metal samples shows that corrosion also supports or drives conversion of magnesium chloride or sea-salt brines to less deliquescent salts. This process has significant implications on corrosion, as the secondary phases are less deliquescent than magnesium chloride; the conversion reaction results in decreases in brine volume, and potentially results in brine dry-out. The deliquescence properties of these reaction products will be a topic of active research in FY19.
Stress corrosion cracks (SCC) represent a major concern for the structural integrity of engineered metal structures. In hazardous or restricted-access environments, remote detection of corrosion or SCC frequently relies on visual methods; however, with standard VT-1 visual inspection techniques, probabilities of SCC detection are low. Here, we develop and evaluate an improved optical sensor for SCC in restricted access-environments by combining a robotically controlled camera/fiber-optic based probe with software-based super-resolution imaging (SRI) techniques to increase image quality and detection of SCC. SRI techniques combine multiple images taken at different viewing angles, locations, or rotations, to produce a single higher- resolution composite image. We have created and tested an imaging system and algorithms for combining optimized, controlled camera movements and super- resolution imaging, improving SCC detection probabilities, and potentially revolutionizing techniques for remote visual inspections of any type.
Metals across all industries demand anticorrosion surface treatments and drive a continual need for high-performing and low-cost coatings. Here we demonstrate polymer-clay nanocomposite thin films as a new class of transparent conformal barrier coatings for protection in corrosive atmospheres. Films assembled via layer-by-layer deposition, as thin as 90 nm, are shown to reduce copper corrosion rates by >1000× in an aggressive H2S atmosphere. These multilayer nanobrick wall coatings hold promise as high-performing anticorrosion treatment alternatives to costlier, more toxic, and less scalable thin films, such as graphene, hexavalent chromium, or atomic-layer-deposited metal oxides.
Here, this study describes the evolving state of electrolyte and corrosion processes associated with sodium chloride on copper at the initial stage of corrosion and the critical implications of this behavior on controlling kinetics and damage distributions. Sodium chloride droplets were placed on copper in humid conditions and the resulting electrolyte properties, corrosion products and damage were characterized over time using time-lapse imaging, micro Raman spectroscopy, TOF-SIMS and optical profilometry. Within minutes of NaCl droplet placement, NaOH-rich films resultant from oxygen reduction advanced stepwise from the droplets, leaving behind concentric trenching attack patterns suggestive of moving anode-cathode pairs at the alkaline film front. Corrosion attack under these spreading alkaline films was up to 10x greater than under the original NaCl drops. Furthermore, solid Cu2Cl(OH)3 shells formed over the surface of the NaCl drops within hours of exposure. Thermodynamic modeling along with immersed electrochemical experiments in simulated droplet and films electrolytes were used to rationalize this behavior and build a description of the rapidly evolving corroding system.
The corrosion behavior of selective laser melted (SLM) 304L was investigated and compared to conventional wrought 304L in aqueous chloride and acidic solutions. Through immersed electrochemical testing and exposure in acidic solutions, the SLM 304L exhibited superior pitting resistance in the polished state compared to wrought 304L. However, the surface condition of the SLM material had a great impact on its corrosion resistance, with the grit-blasted condition exhibiting severely diminished pitting resistance. Local scale, capillary micro-electrochemical and scanning electrochemical microscopy investigations, identified porosity as a contributing factor to decreased corrosion resistance. Preferential corrosion attack was not observed to be related to the characteristic underlying cellular microstructure produced through SLM processing. This study highlights the effects of SLM microstructural features on corrosion resistance, specifically the substantial influence of surface finish on SLM corrosion behavior and the need for development and optimization of processing techniques to improve surface finish.
In June 2017, dust and salt samples were collected from the surface of Spent Nuclear Fuel (SNF) dry storage canisters at the Calvert Cliffs Nuclear Power Plant. The samples were delivered to Sandia National laboratories for analysis. Two types of samples were collected: filter-backed Scotch-Brite TM pads were used to collect dry dust samples for characterization of salt and dust morphologies and distributions; and Saltsmart TM test strips were used to collect soluble salts for determining salt surface loadings per unit area. After collection, the samples were sealed into plastic sleeves for shipping. Condensation within the sleeves containing the Scotch-Brite TM samples remobilized the salts, rendering them ineffective for the intended purpose, and also led to mold growth, further compromising the samples; for these reasons, the samples were not analyzed. The SaltSmart TM samples were unaffected and were analyzed by ion chromatography for major anions and cations. The results of those analyses are presented here.
This progress report describes work done in FY17 at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of spent nuclear fuel (SNF). Of particular concern is stress corrosion cracking (SCC), by which a through-wall crack could potentially form in a canister outer wall over time intervals that are shorter than possible dry storage times. Work in FY17 refined our understanding of the chemical and physical environment on canister surfaces, and evaluated the relationship between chemical and physical environment and the form and extent of corrosion that occurs. The SNL corrosion work focused predominantly on pitting corrosion, a necessary precursor for SCC, and process of pit-to-crack transition; it has been carried out in collaboration with university partners. SNL is collaborating with several university partners to investigate SCC crack growth experimentally, providing guidance for design and interpretation of experiments.
The corrosion susceptibility of a laser powder bed fusion (LPBF) additively manufactured alloy, UNS S17400 (17-4 PH), was explored compared to conventional wrought material. Microstructural characteristics were characterized and related to corrosion behavior in quiescent, aqueous 0.6 M NaCl solutions. Electrochemical measurements demonstrated that the LPBF 17-4 PH alloy exhibited a reduced passivity range and active corrosion compared to its conventional wrought counterpart. A microelectrochemical cell was used to further understand the effects of the local scale and attributed the reduced corrosion resistance of the LPBF material to pores with diameters ≥50 μm.
Metal additive manufacturing (AM) has recently become a desirable process for complex parts across a broad range of applications. However, AM materials often have a varied microstructure due to non-equilibrium solidification conditions. While some adjustments have been made in manufacturing to enhance mechanical traits, very little attention has been directed at understanding the corrosion properties of these materials. The microstructural characteristics of the AM materials may lead to reduction in the corrosion resistance of the AM alloys compared to their conventional counterparts. This presentation explores the corrosion susceptibility of AM stainless steels in aqueous sodium chloride environments as well as industry relevant solutions. Further detailed corrosion studies combined with microstructural characterization provide insight into the microstructural influences on corrosion.
While arc-faults are rare in electrical installations, many documented events have led to fires that resulted in significant damage to energy-generation, commercial and residential systems, as well as surrounding structures, in both the United States and abroad. Arc-plasma discharges arise over time due to a variety of reliability issues related to cable material degradation, electrical and mechanical stresses or acute conductive wiring dislocations. These may lead to discontinuity between energized conductors, facilitating arcing events and fires. Arc-flash events rapidly release significant energy in a localized volume, where the electric arc experiences a reduction in resistance. This facilitates a reduction in electrical resistance as the arc temperature and pressure can increase rapidly. Strong pressure waves, electromagnetic interference (EMI), and intense light from an arc pose a threat to electrical worker safety and system equipment. This arc-fault primer provides basic fundamental insight into arc-fault plasma discharges, and an overview of direct current (DC) and alternating current (AC) arc-fault phenomena. This primer also covers pressure waves and EMI arc-fault hazard analyses related to incident energy prediction and potential damage analysis. Mitigation strategies are also discussed related to engineering design and employment of protective devices including arc-fault circuit interrupters (AFCIs). Best practices related to worker safety are also covered, especially as they pertain to electrical codes and standards, particularly Institute of Electrical and Electronics Engineers (IEEE) 1584 and National Fire Protection Agency (NFPA) 70E. Throughout the primer various modelling and test capabilities at Sandia National Laboratories are also covered, especially as they relate to novel methods of arc-fault/arc-flash characterization and mitigation approaches. Herein, this work describes methods for producing and characterizing controlled, sustained arcs at atmospheric pressures as well as methods for mitigation with novel materials.
Schindelholz, Eric; Kelly, Robert G.; Allwein, Shawn P.; Christie, Michael A.
During routine pharmaceutical development and scale-up work, severe corrosion of a Hastelloy Alloy C-22 filter dryer was observed after single, short (several hours) contact with the product slurry at room temperature. Initial investigations showed that the presence of both 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and HCl was sufficient in an acetonitrile solution to cause rapid corrosion of C-22. More detailed mass loss studies showed initial corrosion rates exceeding25 mm/year that then decreased over several hours to steady state rates of 3-5 mm/year. The corrosion was highly uniform. Electrochemical measurements demonstrated that although C-22 is spontaneously passive in acetonitrile solution, the presence of HCl leads to the development of a transpassive region. Furthermore, DDQ is a sufficiently strong oxidizer, particularly in acidic solutions, to polarize the C-22 well into the transpassive region, leading to the observed high corrosion rates.
The continued exponential growth of photovoltaic technologies paves a path to a solar-powered world, but requires continued progress toward low-cost, high-reliability, high-performance photovoltaic (PV) systems. High reliability is an essential element in achieving low-cost solar electricity by reducing operation and maintenance (O&M) costs and extending system lifetime and availability, but these attributes are difficult to verify at the time of installation. Utilities, financiers, homeowners, and planners are demanding this information in order to evaluate their financial risk as a prerequisite to large investments. Reliability research and development (R&D) is needed to build market confidence by improving product reliability and by improving predictions of system availability, O&M cost, and lifetime. This project is focused on understanding, predicting, and improving the reliability of PV systems. The two areas being pursued include PV arc-fault and ground fault issues, and inverter reliability.