Publications Details

Publications / SAND Report

Utilizing Highly Scattered Light for Intelligence through Aerosols

Bentz, Brian Z.; Redman, Brian J.; Sanchez, A.L.; Laros, James H.; Westlake, Karl W.; Wright, Jeremy B.

This communication is the final report for the project Utilizing Highly Scattered Light for Intelligence through Aerosols funded by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories and lasting six months in 2019. Aerosols like fog reduce visibility and cause down-time that for critical systems or operations are unacceptable. Information is lost due to the random scattering and absorption of light by tiny particles. Computational diffuse optical imaging methods show promise for interpreting the light transmitted through fog, enabling sensing and imaging to improve situational awareness at depths 10 times greater than current methods. Developing this capability first requires verification and validation of diffusion models of light propagation in fog. For this reason, analytical models were developed and compared to experimental data captured at the Sandia National Laboratory Fog Chamber facility. A methodology was developed to incorporate the propagation of scattered light through the imaging optics to a pixel array. The diffusion approximation to the radiative transfer equation was found to predict light propagation in fog under the appropriate conditions.