Publications Details
Technical Feasibility of Direct Disposal of Electrorefiner Salt Waste
Rechard, Robert P.; Hadgu, Teklu H.; Wang, Yifeng; Sanchez, Lawrence C.; Mcdaniel, Patrick; Skinner, Corey; Fathi, Nima
The experimental breeder reactor (EBR-II) used fuel with a layer of sodium surrounding the uranium-zirconium fuel to improve heat transfer. Disposing of this EBR-II used fuel in a geologic repository without treatment is not prudent because of the potentially energetic reaction of the sodium with water. In 2000, the US Department of Energy decided to treat the EBR-II sodium-bonded used fuel in an electrorefiner (ER), which produces a metallic waste, mostly from the cladding. The salt remaining in the ER contains most of the actinides and fission products. Two baseline waste forms were proposed for disposal in a mined repository; the metallic waste, which was to be cast into ingots, and the ER salt waste, which was to be further treated to produce a ceramic waste form. However, alternative disposal pathways for metallic and salt waste streams are being investigated that may reduce the complexity. For example, performance assessments show that both mined repositories in salt and deep boreholes in basement crystalline rock can easily accommodate the ER salt waste without treating it to form a ceramic waste form. Hence the focus of a direct disposal option, as described herein, is now on the feasibility of packaging the ER salt waste in the near term such that it can be transported to a repository in the future without repackaging. A vessel for direct disposal of ER salt waste has been previously proposed, designed, and a prototype manufactured based on desirable features for use in the hot cell. The reported analysis focused on the feasibility of transporting this proposed vessel and whether any issues would suggest that a smaller or larger size is more appropriate. Specifically, three issues are addressed (1) shielding necessary to reduce doses to acceptable levels; (2) the criticality potential and the ease which it can be shown to be inconsequential, and (3) temperatures of the containers in relation to acceptable cask limits. The generally positive results demonstrate that direct disposal of ER in the proposed packaging is feasible without the need to secure funding to modify the facility.