Publications Details

Publications / Journal Article

Stacking Fault Energy Based Alloy Screening for Hydrogen Compatibility

Gibbs, Paul J.; Hough, Patricia D.; Thurmer, Konrad T.; Somerday, Brian P.; San Marchi, Christopher W.; Zimmerman, Jonathan A.

The selection of austenitic stainless steels for hydrogen service is challenging since there are few intrinsic metrics that relate alloy composition to hydrogen degradation. One such metric, explored here, is intrinsic stacking fault energy. Stacking fault energy has an influence on the character and structure of dislocations and on the formation of secondary crystalline phases created during mechanical deformation in austenitic alloys. In this work, a data-driven model for the intrinsic stacking fault energy of common austenitic stainless steel alloys is applied to compare the relative degradation of tensile performance in the presence of hydrogen. A transition in the tensile reduction of area of both 300-series and manganese stabilized stainless steels is observed at a calculated stacking fault energy of approximately 43 mJ m-2, below which pronounced hydrogen degradation on tensile ductility is observed. The model is also applied to suggest alloying strategies for low nickel austenitic stainless steels for hydrogen service. Lastly, through this investigation, we find that calculated intrinsic stacking fault energy is a high-throughput screening metric that enables the ranking of the performance of a diverse range of austenitic stainless steel compositions, as well as the identification of new alloys, with regard to hydrogen compatibility.