Publications Details

Publications / Conference Poster

Simulating residual stresses in simple multi-material composite structures

Hanson, Alexander A.; Nelson, Stacy M.; Skulborstad, Alyssa J.; Werner, Brian T.; Briggs, Timothy B.

Process induced residual stresses commonly occur in composite structures composed of dissimilar materials. These residual stresses form due to differences in the composite materials' coefficients of thermal expansion as well as the shrinkage upon cure exhibited by most thermoset polymer matrix materials. Depending upon the specific geometric details of the composite structure and the materials' curing parameters, it is possible that these residual stresses can result in interlaminar delamination and fracture within the composite as well as plastic deformation in the structure's metallic materials. Therefore, the consideration of potential residual stresses is important when designing composite parts and their manufacturing processes. However, the experimental determination of residual stresses in prototype parts can be prohibitive, both in terms of financial and temporal costs. As an alternative to physical measurement, it is possible for computational tools to be used to quantify potential residual stresses in composite prototype parts. A simplified method for simulating residual stresses was previously validated with two simple bi-material structures composed of aluminum and a carbon fiber/epoxy resin composite. Therefore, the objective of this study is to further validate the simplified method for simulating residual stresses for different composites and more complex structures. The simplified method accounts for both the coefficient of thermal expansion mismatch and polymer shrinkage through the calibration to an experimentally-determined stress-free temperature. This was implemented in Sandia National Laboratories' solid mechanics code, SIERRA, to model split rings with temperature independent and dependent material models. The split rings are comprised of two materials: Aluminum with either a carbon fiber/epoxy resin composite or a glass fiber/epoxy resin composite. Concurrent with the computational efforts, structures similar to those modeled are fabricated and the residual stresses are quantified through the measurement of deformations. The simulations' results are compared to the experimentally observed behaviors for model validation. The results of the comparisons indicate that the proposed finite element modeling approach is capable of accurately simulating the formation of residual stresses in composite structures and a temperature independent material model is adequate within the composite's glassy region. Copyright 2017. Used by CAMX - The Composites and Advanced Materials Expo.