Publications Details
Self-correcting Flip-flops for Triple Modular Redundant Logic in a 12-nm Technology
Clark, Lawrence T.; Duvnjak, Alen; Young-Sciortino, Clifford; Cannon, Matthew J.; Brunhaver, John; Agarwal, Sapan A.; Wilson, Donald; Barnaby, Hugh; Marinella, Matthew J.
Area efficient self-correcting flip-flops for use with triple modular redundant (TMR) soft-error hardened logic are implemented in a 12-nm finFET process technology. The TMR flip-flop slave latches self-correct in the clock low phase using Muller C-elements in the latch feedback. These C-elements are driven by the two redundant stored values and not by the slave latch itself, saving area over a similar implementation using majority gate feedback. These flip-flops are implemented as large shift-register arrays on a test chip and have been experimentally tested for their soft-error mitigation in static and dynamic modes of operation using heavy ions and protons. We show how high clock skew can result in susceptibility to soft-errors in the dynamic mode, and explain the potential failure mechanism.