Publications Details
Seeing in with X-rays: 4D Strain and Thermometry Measurements for Thermal-Mechanical Testing
Winters, C.; Jones, E.M.C.; Halls, Benjamin R.; Murray, Shannon E.; Miers, John C.; Westphal, Eric R.; Hansen, Linda E.; Lowry, Daniel R.; Fayad, S.S.; Obenauf, Dayna G.; Vogel, Dayton J.; Quintana, Enrico C.; Davis, Seth M.; Ramirez, Abraham J.; Jauregui, Luis; Roper, Christopher M.
Understanding temperature-dependent material decomposition and structural deformation induced by combined thermal-mechanical environments is critical for safety qualification of hardware under accident scenarios. Seeing in with X-rays elucidated the physics necessary to develop X-ray strain and thermometry diagnostics for use in optically opaque environments. Two parallel thermometry schemes were explored: X-ray fluorescence and X-ray diffraction of inorganic doped ceramics– colloquially known as thermographic phosphors. Two parallel surface strain techniques–Path-Integrated Digital Image Correlation and Frequency Multiplexed Digital Image Correlation–were demonstrated. Finally, preliminary demonstration of time-resolved digital volume correlation was performed by taking advantage of limited view reconstruction techniques. Additionally, research into blended ceramic-metal coatings was critical to generating intrinsic thermographic patterns for the future combination of X-ray strain and thermometry measurements.