Publications Details

Publications / Journal Article

Response of Integrated Silicon Microwave pin Diodes to X-ray and Fast-Neutron Irradiation

Teng, Jeffrey W.; Nergui, Delgermaa; Sepulveda-Ramos, Nelson E.; Tzintzarov, George N.; Mensah, Yaw; Cheon, Clifford D.; Rao, Sunil G.; Ringel, Brett; Gorchichko, Mariia; Li, Kan; Ying, Hanbin; Ildefonso, Adrian; Dodds, Nathaniel A.; Nowlin, Robert N.; Zhang, En X.; Fleetwood, Daniel M.; Cressler, John D.

Here, integrated silicon microwave pin diodes are exposed to 10-keV X-rays up to a dose of 2 Mrad(SiO2) and 14-MeV fast neutrons up to a fluence of 2.2×1013 cm-2. Changes in both DC leakage current and small-signal circuit components are examined. Degradation in performance due to total-ionizing dose is shown to be suppressed by non-quasi-static effects during RF operation. Tolerance to displacement damage from fast neutrons is also observed, which is explained using TCAD simulations. Overall, the characterized pin diodes are tolerant to cumulative radiation at levels consistent with space applications such as geosynchronous weather satellites.