Publications Details

Publications / SAND Report

Quantum Sensed Electron Spin Resonance Discovery Platform (Final Report)

Lilly, Michael L.; Saleh Ziabari, Maziar S.; Titze, Michael T.; Henshaw, Jacob D.; Bielejec, Edward S.; Huber, Dale L.; Mounce, Andrew M.

The properties of materials can change dramatically at the nanoscale new and useful properties can emerge. An example is found in the paramagnetism in iron oxide magnetic nanoparticles. Using magnetically sensitive nitrogen-vacancy centers in diamond, we developed a platform to study electron spin resonance of nanoscale materials. To implement the platform, diamond substrates were prepared with nitrogen vacancy centers near the surface. Nanoparticles were placed on the surface using a drop casting technique. Using optical and microwave pulsing techniques, we demonstrated T1 relaxometry and double electron-electron resonance techniques for measuring the local electron spin resonance. The diamond NV platform developed in this project provides a combination of good magnetic field sensitivity and high spatial resolution and will be used for future investigations of nanomaterials and quantum materials.