Publications Details

Publications / Other Report

Quantification of Residual Water in Spent Fuel Dry Storage Canisters Using Mass Spectrometry

Pulido, Ramon J.; Taconi, Anna M.; Foulk, James W.; Baigas, Beau T.; Durbin, S.

The purpose of this report is to document updates on the apparatus to simulate commercial vacuum drying procedures at the Nuclear Energy Work Complex at Sandia National Laboratories. Validation of the extent of water removal in a dry spent nuclear fuel storage system based on drying procedures used at nuclear power plants is needed to close existing technical gaps. Operational conditions leading to incomplete drying may have potential impacts on the fuel, cladding, and other components in the system during subsequent storage and disposal, such as fuel degradation; cladding corrosion, embrittlement, or breaching; and the creation of a flammable environment via radiolysis of water. A general lack of data suitable for model validation of commercial nuclear canister drying processes necessitates well-designed investigations of drying process efficacy and water retention. Scaled tests that incorporate relevant physics and well-controlled boundary conditions are essential to provide insight and guidance to the simulation of prototypic systems undergoing drying processes. This report documents details on the quantification of residual water in the Advanced Drying Cycle Simulator (ADCS), an apparatus built to simulate commercial drying procedures and quantify the amount of residual water remaining in a pressurized water reactor (PWR) fuel assembly after drying. The ADCS was constructed with a prototypic 17×17 PWR fuel skeleton and waterproof heater rods to simulate decay heat. The ADCS is outfitted with thermocouples to measure the thermal response of the ADCS to simulated decay heats and internal helium fill pressures relevant to commercial drying procedures. The ADCS is also instrumented with pressure transducers to measure the pressures and vacuum levels observed during simulated commercial drying. The most unique instrumentation used for quantifying residual water in the ADCS is a Hiden Analytical HPR-30 mass spectrometer (MS), which measures gas compositions of the ADCS internal free volume, based on partial pressures calculated from relative proportions of gas molecules detected by the MS. This report details the methodology used to implement MS measurements in quantifying residual water in the ADCS. This methodology includes the calibration of the HPR-30 MS to a Buck Research Instruments CR-4 chilled mirror hygrometer, which itself is calibrated to a NIST-traceable standard. Data collected by both the MS and the chilled mirror hygrometer from water/helium mixtures ranging from 150 to 500,000 ppmv water in helium were used to generate calibration curves, establishing a source of verification of MS measured water contents. Details regarding water content measurement uncertainties are included in this report, defining the accuracy and verifiability of the HPR-30 MS in measuring residual water content in simulated dry storage canister environments.