Publications Details

Publications / SAND Report

Pipe Overpack Container Fire Testing: Phase II-B

Mendoza, Hector M.; Figueroa Faria, Victor G.; Gill, Walt; Ammerman, Douglas J.; Sanborn, Scott E.

The Pipe Overpack Container (POC) was developed at Rocky Flats to transport plutonium residues with higher levels of plutonium than standard transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) for disposal. In 1996 Sandia National Laboratories (SNL) conducted a series of tests to determine the degree of protection POCs provided during storage accident events. One of these tests exposed four of the POCs to a 30-minute engulfing pool fire. This test resulted in one of the POCs generating sufficient internal pressure to pop off its drum lid and expose the top of the pipe container (PC) to the fire environment. The initial contents of the POCs were inert materials that would not generate large internal pressure within the PC if heated. However, POCs are now being used to store combustible Transuranic (TRU) waste at Department of Energy (DOE) sites. At the request of DOE's Office of Environmental Management (EM) and National Nuclear Security Administration (NNSA), SNL started conducting a new series of fire tests in 2015 to examine whether PCs with combustibles would reach a temperature that could result in: (1) decomposition of inner contents and (2) subsequent generation of sufficient gas to cause the PC to over-pressurize and release its inner contents. In 2016, Phase II of the tests showed that POCs tested in a pool fire failed within 3 minutes of ignition with the POC lid ejecting. These POC lids were fitted with a NUCFIL-019DS filter and revealed that this specific filter did not relieve sufficient pressure to prevent lid ejection. In the Fall of 2017, Phase II-A was conducted to expose POCs to a 30-minute pool fire with similar configurations to those tested in Phase II, except that the POC lids were fitted with an UltraTech (UT) 9424S filter instead. That specific filter was chosen because of its design to help relieve internal pressure during the fire and thus prevent lid ejection. In Phase II-A, however, setups of two POCs stacked upon one another were never tested, which led to this phase of tests, Phase II-B. This report will describe the various tests conducted in Phase II-B, present results from these tests, and implications for the POCs based on the test results will be discussed.