Publications Details
MRT 7365 Power flow physics and key physics phenomena: EMPIRE verification suite
Sirajuddin, David; Hamlin, Nathaniel D.; Evstatiev, Evstati G.; Hess, Mark H.; Cartwright, Keith
This milestone work baselines electromagnetic particle-in-cell capability of the EMPIRE plasma simulation code to model key processes germane to the physics of electrode plasmas arising in magnetically-insulated transmission lines operating at or near 20 MA. This evaluation is done so through the provision of benchmark verification problems designed to exercise the individual and combined physics models on a small-scale surrogate geometry for the final-feed-to-load region of the Z accelerator under representative operating conditions. In this report, we overview our test designs, and present a portfolio of simulation results along with performance assessments which altogether establish state-of-the-art. In particular, two main verification categories are covered this report: (1) Z-relevant desorption physics (Temkin isotherm), and (2) two approaches to simulate electrode plasma creation and dynamics (automatic creation versus self-consistent creation through direct simulation Monte Carlo collisions).