Publications Details
Monte-Carlo modeling and design of a high-resolution hyperspectral computed tomography system with a multi-material patterned anodes for material identification applications
Dalton, Gabriella D.; Laros, James H.; Clifford, Joshua M.; Kemp, Emily K.; Limpanukorn, Ben L.; Jimenez, Edward S.
Industrial and security communities leverage x-ray computed tomography for several applications in non-destructive evaluation such as material detection and metrology. Many of these applications ultimately reach a limit as most x-ray systems have a nonlinear mathematical operator due to the Bremsstrahlung radiation emitted from the x-ray source. This work proposes a design of a multi-metal pattered anode coupled with a hyperspectral X-ray detector to improve spatial resolution, absorption signal, and overall data quality for various quantitative. The union of a multi-metal pattered anode x-ray source with an energy-resolved photon counting detector permits the generation and detection of a preferential set of X-ray energy peaks. When photons about the peaks are detected, while rejecting photons outside this neighborhood, the overall quality of the image is improved by linearizing the operator that defines the image formation. Additionally, the effective X-ray focal spot size allows for further improvement of the image quality by increasing resolution. Previous works use machine learning techniques to analyze the hyperspectral computed tomography signal and reliably identify and discriminate a wide range of materials based on a material's composition, improving data quality through a multi-material pattern anode will further enhance these identification and classification methods. This work presents initial investigations of a multi-metal patterned anode along with a hyperspectral detector using a general-purpose Monte Carlo particle transport code known as PHITS version 3.24. If successful, these results will have tremendous impact on several nondestructive evaluation applications in industry, security, and medicine.