Publications Details
INFLUENCE OF HARDNESS ON HYDROGEN-ASSISTED FRACTURE IN PIPELINE STEELS
Ronevich, Joseph; Agnani, Milan; Gagliano, Michael; Parker, Jonathan; San Marchi, Chris
To decarbonize the energy sector, there are international efforts to displace carbon-based fuels with renewable alternatives, such as hydrogen. Storage and transportation of gaseous hydrogen are key components of large-scale deployment of carbon-neutral energy technologies, especially storage at scale and transportation over long distances. Due to the high cost of deploying large-scale infrastructure, the existing pipeline network is a potential means of transporting blended natural gas-hydrogen fuels in the near term and carbon-free hydrogen in the future. Much of the existing infrastructure in North America was deployed prior to 1970 when greater variability existed in steel processing and joining techniques often leading to microstructural inhomogeneities and hard spots, which are local regions of elevated hardness relative to the pipe or weld. Hard spots, particularly in older pipes and welds, are a known threat to structural integrity in the presence of hydrogen. High-strength materials are susceptible to hydrogen-assisted fracture, but the susceptibility of hard spots in otherwise low-strength materials (such as vintage pipelines) has not been systematically examined. Assessment of fracture performance of pipeline steels in gaseous hydrogen is a necessary step to establish an approach for structural integrity assessment of pipeline infrastructure for hydrogen service. This approach must include comprehensive understanding of microstructural anomalies (such as hard spots), especially in vintage materials. In this study, fracture resistance of pipeline steels is measured in gaseous hydrogen with a focus on high strength materials and hardness limits established in common practice and in current pipeline codes (such as ASME B31.12). Elastic-plastic fracture toughness measurements were compared for several steel grades to identify the relationship between hardness and fracture resistance in gaseous hydrogen.