Publications Details
Hybrid fs/ps rotational CARS temperature and oxygen measurements and soot LII measurements in a turbulent C2H4-fueled jet flame
Kearney, S.P.; Hoffmeister, Kathryn N.; Guildenbecher, Daniel R.; Winters, Caroline W.; Grasser, Thomas W.; Hewson, John C.
We present a detailed set of measurements from a piloted, sooting, turbulent C2H4-fueled jet flame. Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (CARS) is used to monitor temperature and oxygen, while laser-induced incandescence (LII) is applied for imaging of the soot volume fraction in the challenging jet-flame environment at Reynolds number, Re = 20,000. A new dual-detection channel CARS instrument provides the enhanced dynamic range required in this highly intermittent and turbulent environment. LII measurements are made across a wide field of view requiring us to account for spatial variation in the soot-volume-fraction response of the instrument. Single-laser-shot results are used to illustrate the mean and rms statistics, as well as probability densities of all three measured quantities. LII data from the soot-growth region of the jet are used to benchmark the soot source term for one-dimensional turbulence (ODT) modeling of this turbulent flame. The ODT code is then used to predict temperature, oxygen and soot fluctuations within the soot oxidation region higher in the flame.