Publications Details
Helium Gas Release by Rocks Undergoing Crushing
Kibikas, William M.; Paul, Matthew J.; Wilson, Jennifer E.; Kruichak-Duhigg, Jessica N.; Broome, Scott T.
Geogenic gases often reside in intergranular pore space, fluid inclusions, and within mineral grains. In particular, helium-4 (4He) is generated by alpha decay of uranium and thorium in rocks. The emitted 4He nuclei can be trapped in the rock matrix or in fluid inclusions. Recent work has shown that releases of helium occur during plastic deformation of crustal rocks above atmospheric concentrations that are detectable in the field. However, it is unclear how rock type and deformation modalities affect the cumulative gas released. This work seeks to address how different deformation modalities observed in several rock types affect release of helium. Axial compression tests with granite, rhyolite, tuff, dolostone, and sandstone - under vacuum conditions - were conducted to measure the transient release of helium from each sample during crushing. It was found that, when crushed up to 97500 N, each rock type released helium at a rate quantifiable using a helium mass spectrometer leak detector. For plutonic rock like granite, helium flow rate spikes with the application of force as the samples elastically deform until fracture, then decays slowly until grain breakdown comminution begins to occur. Both the rhyolite and tuff do not experience such large spikes in helium flow rate, with the rhyolites fracturing at much lower force and the tuffs compacting instead of fracturing due to their high porosity. Both rhyolite and tuff instead experience a lesser but steady helium release as they are crushed. The cumulative helium release for the volcanic tuffs varies as much as two orders of magnitude but is fairly consistent for the denser rhyolite and granite tested. The results indicate that there is a large degassing of helium as rocks are elastically and inelastically deformed prior to fracturing. For more porous and less brittle rocks, the cumulative release will depend more on the degree of deformation applied. These results are compared with known U/Th radioisotopes in the rocks to relate the trapped helium as either produced in the rock or from secondary migration of 4He.