Publications Details

Publications / SAND Report

Enhance coherence time in intensely driven quantum systems

Pan, Wei P.; Reno, J.L.; Tranchida, Julien G.

Not long ago, it was shown that a discrete time crystal can be realized if a quantum system is periodically driven to a non-equilibrium state. Proof-of-concept experiments are reported by two groups using trapped ions and nitrogen-vacancy centers in diamond, respectively. The concept of discrete time crystals vividly demonstrates that the coherence time of a quantum system may be enhanced by driving the system out of equilibrium. In this project, we want to test this novel concept in another canonical quantum system, the quantum Hall system in a two-dimensional electron gas (2DEG). Compared to other systems, quantum Hall magnetism (QHM) in high quality, industry-compatible GaAs/AlGaAs heterostructures allows for detailed and quantitative studies in a particularly simple and clean environment. This detailed knowledge should help achieve longer coherence times in a driven QHM system. This report will detail the results from a recent study on the stability of the quantum Hall skyrmions (QHS) state at a Landau level filling close to ν = 1 by measuring its current-voltage (I-V) breakdown characteristics under radio-frequency (RF) radiations. We observe that the critical current increases visibly when the RF frequency is right at the Larmor frequency of 75As nuclei, where the hyperfine interaction between electron and nuclear spins perturbs the QHS state most significantly. We believe that this observation is consistent with the novel concept that the coherence time of a quantum system may be enhanced by driving the system out of equilibrium.