Publications Details
Direct simulation Monte Carlo investigation of the Richtmyer-Meshkov instability
Gallis, Michail A.; Koehler, Timothy P.; Torczynski, J.R.; Plimpton, Steven J.
The Richtmyer-Meshkov instability (RMI) is investigated using the Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics. Due to the inherent statistical noise and the significant computational requirements, DSMC is hardly ever applied to hydrodynamic flows. Here, DSMC RMI simulations are performed to quantify the shock-driven growth of a single-mode perturbation on the interface between two atmospheric-pressure monatomic gases prior to re-shocking as a function of the Atwood and Mach numbers. The DSMC results qualitatively reproduce all features of the RMI and are in reasonable quantitative agreement with existing theoretical and empirical models. The DSMC simulations indicate that there is a universal behavior, consistent with previous work in this field that RMI growth follows.