Publications Details

Publications / SAND Report

Cryogenic Control Circuitry for Superconducting Qubits

Lewis, Rupert M.; Del Skinner Ramos, Suelicarmen; Harris, Charles T.; Bretz-Sullivan, Terence M.

Superconducting qubits have reached the point where system designers are worried about the heat that control wiring brings into the cryostat. To continue scaling cryogenic quantum systems, control solutions that work inside the cold space must be explored. One possibility is to use control electronics that is native to superconductivity, so called single-flux-quantum (SFQ) circuitry, to form an interface between qubits and whatever other electronics is needed to control eventual quantum systems. To begin exploring the utility of SFQ as control circuitry, we performed modeling and experiments on qubit readout using ballistic fluxons which are SFQ in the limit of ballistic fluxon transport. Our modeling results show that a flavor of qubit, the fluxonium, can be read out using ballistic fluxons. We designed test samples to prove some of the key concepts needed for such a readout but were ultimately unable to getting a working demonstration. The lack of testing success was due to challenges in fabrication and running short of time to perform testing rather than a fundamental problem with our analysis.