Publications Details
Comparison of Fatigue and Fracture Behavior of Welded and Seamless Pipe Steel in Gaseous Hydrogen
Agnani, Milan; Ronevich, Joseph; San Marchi, Chris
Natural gas pipelines could be an important pathway to transport gaseous hydrogen (GH2) as a cleaner alternative to fossil fuels. However, a comprehensive understanding of hydrogen-assisted fatigue and fracture resistance in pipeline steels is needed, including an assessment of the diverse microstructures present in natural gas infrastructure. In thus study, we focus on modern steel pipe and consider both welded pipe and seamless pipe. In-situ fatigue crack growth (FCG) and fracture tests were conducted on compact tension samples extracted from the base metal, seam-weld, and heat affected zone of an X70 pipe steel in high-purity GH2 (210 bar pressure). Additionally, a seamless X65 pipeline microstructure (with comparable strength) was evaluated to compare the different microstructure of seamless pipe. The different microstructures had comparable FCG rates in GH2, with crack growth rates up to 30 times faster in hydrogen compared to air. In contrast, the fracture resistance in GH2 depended on the characteristics of the microstructure varying in the range of approximately 80 to 110 MPa√m.