Publications

Results 376–400 of 9,998

Search results

Jump to search filters

Understanding the Design Space of Sparse/Dense Multiphase Dataflows for Mapping Graph Neural Networks on Spatial Accelerators

Garg, Raveesh; Qin, Eric; Martinez, Francisco M.; Guirado, Robert; Jain, Akshay; Abadal, Sergi; Abellan, Jose L.; Acacio, Manuel E.; Alarcon, Eduard; Rajamanickam, Sivasankaran R.; Krishna, Tushar

Graph Neural Networks (GNNs) have garnered a lot of recent interest because of their success in learning representations from graph-structured data across several critical applications in cloud and HPC. Owing to their unique compute and memory characteristics that come from an interplay between dense and sparse phases of computations, the emergence of reconfigurable dataflow (aka spatial) accelerators offers promise for acceleration by mapping optimized dataflows (i.e., computation order and parallelism) for both phases. The goal of this work is to characterize and understand the design-space of dataflow choices for running GNNs on spatial accelerators in order for the compilers to optimize the dataflow based on the workload. Specifically, we propose a taxonomy to describe all possible choices for mapping the dense and sparse phases of GNNs spatially and temporally over a spatial accelerator, capturing both the intra-phase dataflow and the inter-phase (pipelined) dataflow. Using this taxonomy, we do deep-dives into the cost and benefits of several dataflows and perform case studies on implications of hardware parameters for dataflows and value of flexibility to support pipelined execution.

More Details

FAIR DEAL Grand Challenge Overview

Allemang, Christopher R.; Anderson, Evan M.; Baczewski, Andrew D.; Bussmann, Ezra B.; Butera, Robert; Campbell, DeAnna M.; Campbell, Quinn C.; Carr, Stephen M.; Frederick, Esther; Gamache, Phillip G.; Gao, Xujiao G.; Grine, Albert D.; Gunter, Mathew M.; Halsey, Connor H.; Ivie, Jeffrey A.; Katzenmeyer, Aaron M.; Leenheer, Andrew J.; Lepkowski, William L.; Lu, Tzu-Ming L.; Mamaluy, Denis M.; Mendez Granado, Juan P.; Pena, Luis F.; Schmucker, Scott W.; Scrymgeour, David S.; Tracy, Lisa A.; Wang, George T.; Ward, Dan; Young, Steve M.

While it is likely practically a bad idea to shrink a transistor to the size of an atom, there is no arguing that it would be fantastic to have atomic-scale control over every aspect of a transistor – a kind of crystal ball to understand and evaluate new ideas. This project showed that it was possible to take a niche technique used to place dopants in silicon with atomic precision and apply it broadly to study opportunities and limitations in microelectronics. In addition, it laid the foundation to attaining atomic-scale control in semiconductor manufacturing more broadly.

More Details

The Fingerprints of Stratospheric Aerosol Injection in E3SM

Wagman, Benjamin M.; Swiler, Laura P.; Chowdhary, Kamaljit S.; Hillman, Benjamin H.

The June 15, 1991 Mt. Pinatubo eruption is simulated in E3SM by injecting 10 Tg of SO2 gas in the stratosphere, turning off prescribed volcanic aerosols, and enabling E3SM to treat stratospheric volcanic aerosols prognostically. This experimental prognostic treatment of volcanic aerosols in the stratosphere results in some realistic behaviors (SO2 evolves into H2SO4 which heats the lower stratosphere), and some expected biases (H2SO4 aerosols sediment out of the stratosphere too quickly). Climate fingerprinting techniques are used to establish a Mt. Pinatubo fingerprint based on the vertical profile of temperature from the E3SMv1 DECK ensemble. By projecting reanalysis data and preindustrial simulations onto the fingerprint, the Mt. Pinatubo stratospheric heating anomaly is detected. Projecting the experimental prognostic aerosol simulation onto the fingerprint also results in a detectable heating anomaly, but, as expected, the duration is too short relative to reanalysis data.

More Details

Simulation of Low-Rm physics in complex geometries on GPUs with LGR

Zwick, David Z.; Ibanez-Granados, Daniel A.

Efficient modeling of low magnetic Reynolds number (low-Rm) magnetohydrodynamics is often challenging and requires the implementation of innovative techniques to avoid key barriers experienced with prior approaches. We detail a new paradigm for first-principles simulation of the solution to the low-Rm governing equations in complex geometries. As a result of a number of innovative numerical advances, the next-generation GPU (graphics processing unit) accelerated physics code LGR has been successfully applied to the modeling of exploding wire problems.

More Details

Causal Evaluations for Identifying Differences between Observations and Earth System Models

Nichol, Jeffrey N.; Peterson, Matthew G.; Peterson, Kara J.

We use a nascent data-driven causal discovery method to find and compare causal relationships in observed data and climate model output. We consider ten different features in the Arctic climate collected from public databases on observational and Energy Exascale Earth System Model (E3SM) data. In identifying and analyzing the resulting causal networks, we make meaningful comparisons between observed and climate model interdependencies. This work demonstrates our ability to apply the PCMCI causal discovery algorithm to Arctic climate data, that there are noticeable similarities between observed and simulated Arctic climate dynamics, and that further work is needed to identify specific areas for improvement to better align models with natural observations.

More Details

Leveraging Spin-Orbit Coupling in Ge/SiGe Heterostructures for Quantum Information Transfer

Bretz-Sullivan, Terence M.; Brickson, Mitchell I.; Foster, Natalie D.; Hutchins-Delgado, Troy A.; Lewis, Rupert; Lu, Tzu-Ming L.; Miller, Andrew J.; Srinivasa, Vanita; Tracy, Lisa A.; Wanke, Michael W.; Luhman, Dwight R.

Hole spin qubits confined to lithographically - defined lateral quantum dots in Ge/SiGe heterostructures show great promise. On reason for this is the intrinsic spin - orbit coupling that allows all - electric control of the qubit. That same feature can be exploited as a coupling mechanism to coherently link spin qubits to a photon field in a superconducting resonator, which could, in principle, be used as a quantum bus to distribute quantum information. The work reported here advances the knowledge and technology required for such a demonstration. We discuss the device fabrication and characterization of different quantum dot designs and the demonstration of single hole occupation in multiple devices. Superconductor resonators fabricated using an outside vendor were found to have adequate performance and a path toward flip-chip integration with quantum devices is discussed. The results of an optical study exploring aspects of using implanted Ga as quantum memory in a Ge system are presented.

More Details

Efficient flexible characterization of quantum processors with nested error models

New Journal of Physics

Nielsen, Erik N.; Rudinger, Kenneth M.; Proctor, Timothy J.; Young, Kevin C.; Blume-Kohout, Robin J.

We present a simple and powerful technique for finding a good error model for a quantum processor. The technique iteratively tests a nested sequence of models against data obtained from the processor, and keeps track of the best-fit model and its wildcard error (a metric of the amount of unmodeled error) at each step. Each best-fit model, along with a quantification of its unmodeled error, constitutes a characterization of the processor. We explain how quantum processor models can be compared with experimental data and to each other. We demonstrate the technique by using it to characterize a simulated noisy two-qubit processor.

More Details

A New Route to Quantum-Scale Structures through a Novel Enhanced Germanium Diffusion Mechanism

Wang, George T.; Lu, Ping L.; Sapkota, Keshab R.; Baczewski, Andrew D.; Campbell, Quinn C.; Schultz, Peter A.; Jones, Kevin S.; Turner, Emily M.; Sharrock, Chappel J.; Law, Mark E.; Yang, Hongbin

This project sought to develop a fundamental understanding of the mechanisms underlying a newly observed enhanced germanium (Ge) diffusion process in silicon germanium (SiGe) semiconductor nanostructures during thermal oxidation. Using a combination of oxidationdiffusion experiments, high resolution imaging, and theoretical modeling, a model for the enhanced Ge diffusion mechanism was proposed. Additionally, a nanofabrication approach utilizing this enhanced Ge diffusion mechanism was shown to be applicable to arbitrary 3D shapes, leading to the fabrication of stacked silicon quantum dots embedded in SiGe nanopillars. A new wet etch-based method for preparing 3D nanostructures for highresolution imaging free of obscuring material or damage was also developed. These results enable a new method for the controlled and scalable fabrication of on-chip silicon nanostructures with sub-10 nm dimensions needed for next generation microelectronics, including low energy electronics, quantum computing, sensors, and integrated photonics.

More Details

Critical Infrastructure Decision-Making under Long-Term Climate Hazard Uncertainty: The Need for an Integrated, Multidisciplinary Approach

Staid, Andrea S.; Fleming Lindsley, Elizabeth S.; Gunda, Thushara G.; Jackson, Nicole D.

U.S. critical infrastructure assets are often designed to operate for decades, and yet long-term planning practices have historically ignored climate change. With the current pace of changing operational conditions and severe weather hazards, research is needed to improve our ability to translate complex, uncertain risk assessment data into actionable inputs to improve decision-making for infrastructure planning. Decisions made today need to explicitly account for climate change – the chronic stressors, the evolution of severe weather events, and the wide-ranging uncertainties. If done well, decision making with climate in mind will result in increased resilience and decreased impacts to our lives, economies, and national security. We present a three-tier approach to create the research products needed in this space: bringing together climate projection data, severe weather event modeling, asset-level impacts, and contextspecific decision constraints and requirements. At each step, it is crucial to capture uncertainties and to communicate those uncertainties to decision-makers. While many components of the necessary research are mature (i.e., climate projection data), there has been little effort to develop proven tools for long-term planning in this space. The combination of chronic and acute stressors, spatial and temporal uncertainties, and interdependencies among infrastructure sectors coalesce into a complex decision space. By applying known methods from decision science and data analysis, we can work to demonstrate the value of an interdisciplinary approach to climate-hazard decision making for longterm infrastructure planning.

More Details

ASCEND: Asymptotically compatible strong form foundations for nonlocal discretization

Trask, Nathaniel A.; D'Elia, Marta D.; Littlewood, David J.; Silling, Stewart A.; Trageser, Jeremy T.; Tupek, Michael R.

Nonlocal models naturally handle a range of physics of interest to SNL, but discretization of their underlying integral operators poses mathematical challenges to realize the accuracy and robustness commonplace in discretization of local counterparts. This project focuses on the concept of asymptotic compatibility, namely preservation of the limit of the discrete nonlocal model to a corresponding well-understood local solution. We address challenges that have traditionally troubled nonlocal mechanics models primarily related to consistency guarantees and boundary conditions. For simple problems such as diffusion and linear elasticity we have developed complete error analysis theory providing consistency guarantees. We then take these foundational tools to develop new state-of-the-art capabilities for: lithiation-induced failure in batteries, ductile failure of problems driven by contact, blast-on-structure induced failure, brittle/ductile failure of thin structures. We also summarize ongoing efforts using these frameworks in data-driven modeling contexts. This report provides a high-level summary of all publications which followed from these efforts.

More Details
Results 376–400 of 9,998
Results 376–400 of 9,998