Publications

Results 3651–3700 of 9,998

Search results

Jump to search filters

Sensor Placement Optimization using Chama

Klise, Katherine A.; Laird, Carl D.; Nicholson, Bethany L.

Continuous or regularly scheduled monitoring has the potential to quickly identify changes in the environment. However, even with low - cost sensors, only a limited number of sensors can be deployed. The physical placement of these sensors, along with the sensor technology and operating conditions, can have a large impact on the performance of a monitoring strategy. Chama is an open source Python package which includes mixed - integer, stochastic programming formulations to determine sensor locations and technology that maximize monitoring effectiveness. The methods in Chama are general and can be applied to a wide range of applications. Chama is currently being used to design sensor networks to monitor airborne pollutants and to monitor water quality in water distribution systems. The following documentation includes installation instructions and examples, description of software features, and software license. The software is intended to be used by regulatory agencies, industry, and the research community. It is assumed that the reader is familiar with the Python Programming Language. References are included for addit ional background on software components. Online documentation, hosted at http://chama.readthedocs.io/, will be updated as new features are added. The online version includes API documentation .

More Details

Milestone Completion Report WBS 1.3.5.05 ECP/VTK-m FY17Q4 [MS-17/03-06] Key Reduce / Spatial Division / Basic Advect / Normals STDA05-4

Moreland, Kenneth D.

The FY17Q4 milestone of the ECP/VTK-m project includes the completion of a key-reduce scheduling mechanism, a spatial division algorithm, an algorithm for basic particle advection, and the computation of smoothed surface normals. With the completion of this milestone, we are able to, respectively, more easily group like elements (a common visualization algorithm operation), provide the fundamentals for geometric search structures, provide the fundamentals for many flow visualization algorithms, and provide more realistic rendering of surfaces approximated with facets.

More Details

What Randomized Benchmarking Actually Measures

Physical Review Letters

Proctor, Timothy J.; Rudinger, Kenneth M.; Young, Kevin C.; Sarovar, Mohan S.; Blume-Kohout, Robin J.

Randomized benchmarking (RB) is widely used to measure an error rate of a set of quantum gates, by performing random circuits that would do nothing if the gates were perfect. In the limit of no finite-sampling error, the exponential decay rate of the observable survival probabilities, versus circuit length, yields a single error metric r. For Clifford gates with arbitrary small errors described by process matrices, r was believed to reliably correspond to the mean, over all Clifford gates, of the average gate infidelity between the imperfect gates and their ideal counterparts. We show that this quantity is not a well-defined property of a physical gate set. It depends on the representations used for the imperfect and ideal gates, and the variant typically computed in the literature can differ from r by orders of magnitude. We present new theories of the RB decay that are accurate for all small errors describable by process matrices, and show that the RB decay curve is a simple exponential for all such errors. These theories allow explicit computation of the error rate that RB measures (r), but as far as we can tell it does not correspond to the infidelity of a physically allowed (completely positive) representation of the imperfect gates.

More Details

Evaluating the Viability of Using Compression to Mitigate Silent Corruption of Read-Mostly Application Data

Proceedings - IEEE International Conference on Cluster Computing, ICCC

Levy, Scott L.; Ferreira, Kurt B.; Bridges, Patrick G.

Aggregating millions of hardware components to construct an exascale computing platform will pose significant resilience challenges. In addition to slowdowns associated with detected errors, silent errors are likely to further degrade application performance. Moreover, silent data corruption (SDC) has the potential to undermine the integrity of the results produced by important scientific applications.In this paper, we propose an application-independent mechanism to efficiently detect and correct SDC in read-mostly memory, where SDC may be most likely to occur. We use memory protection mechanisms to maintain compressed backups of application memory. We detect SDC by identifying changes in memory contents that occur without explicit write operations. We demonstrate that, for several applications, our approach can potentially protect a significant fraction of application memory pages from SDC with modest overheads. Moreover, our proposed technique can be straightforwardly combined with many other approaches to provide a significant bulwark against SDC.

More Details

Enabling Diverse Software Stacks on Supercomputers Using High Performance Virtual Clusters

Proceedings - IEEE International Conference on Cluster Computing, ICCC

Younge, Andrew J.; Laros, James H.; Grant, Ryan E.; Gaines, Brian G.; Brightwell, Ronald B.

While large-scale simulations have been the hallmark of the High Performance Computing (HPC) community for decades, Large Scale Data Analytics (LSDA) workloads are gaining attention within the scientific community not only as a processing component to large HPC simulations, but also as standalone scientific tools for knowledge discovery. With the path towards Exascale, new HPC runtime systems are also emerging in a way that differs from classical distributed computing models. However, system software for such capabilities on the latest extreme-scale DOE supercomputing needs to be enhanced to more appropriately support these types of emerging software ecosystems.In this paper, we propose the use of Virtual Clusters on advanced supercomputing resources to enable systems to support not only HPC workloads, but also emerging big data stacks. Specifically, we have deployed the KVM hypervisor within Cray's Compute Node Linux on a XC-series supercomputer testbed. We also use libvirt and QEMU to manage and provision VMs directly on compute nodes, leveraging Ethernet-over-Aries network emulation. To our knowledge, this is the first known use of KVM on a true MPP supercomputer. We investigate the overhead our solution using HPC benchmarks, both evaluating single-node performance as well as weak scaling of a 32-node virtual cluster. Overall, we find single node performance of our solution using KVM on a Cray is very efficient with near-native performance. However overhead increases by up to 20% as virtual cluster size increases, due to limitations of the Ethernet-over-Aries bridged network. Furthermore, we deploy Apache Spark with large data analysis workloads in a Virtual Cluster, effectively demonstrating how diverse software ecosystems can be supported by High Performance Virtual Clusters.

More Details

A global stochastic programming approach for the optimal placement of gas detectors with nonuniform unavailabilities

Journal of Loss Prevention in the Process Industries

Laird, Carl D.; Liu, Jianfeng

Optimal design of a gas detection systems is challenging because of the numerous sources of uncertainty, including weather and environmental conditions, leak location and characteristics, and process conditions. Rigorous CFD simulations of dispersion scenarios combined with stochastic programming techniques have been successfully applied to the problem of optimal gas detector placement; however, rigorous treatment of sensor failure and nonuniform unavailability has received less attention. To improve reliability of the design, this paper proposes a problem formulation that explicitly considers nonuniform unavailabilities and all backup detection levels. The resulting sensor placement problem is a large-scale mixed-integer nonlinear programming (MINLP) problem that requires a tailored solution approach for efficient solution. We have developed a multitree method which depends on iteratively solving a sequence of upper-bounding master problems and lower-bounding subproblems. The tailored global solution strategy is tested on a real data problem and the encouraging numerical results indicate that our solution framework is promising in solving sensor placement problems. This study was selected for the special issue in JLPPI from the 2016 International Symposium of the MKO Process Safety Center.

More Details
Results 3651–3700 of 9,998
Results 3651–3700 of 9,998