Publications

Results 87276–87300 of 99,299

Search results

Jump to search filters

Microsystem packaging of an RF SAW correlator

Brocato, Robert W.

An electrically programmable surface acoustic wave (SAW) correlator was recently completed from design through small scale production in support of low power space-based communications for NASA. Three different versions of this RF microsystem were built to satisfy design requirements and overcome packaging and system reliability related issues. Flip-chip packaging and conventional thick film hybrid assembly techniques are compared in the fabrication of this microsystem.

More Details

Two-dimensional metal-insulator transition and in-plane magnetoresistance in a high mobility strained Si quantum well

Proposed for presentation at the Physical Review B.

Pan, Wei

The apparent metal-insulator transition is observed in a high-quality two-dimensional electron system (2DES) in the strained Si quantum well of a Si/Si{sub 1-x}Ge{sub x} heterostructure with mobility {mu} = 1.9 x 10{sup 5} cm{sup 2}/V s at density n = 1.45 x 10{sup 11} cm{sup -2}. The critical density, at which the thermal coefficient of low T resistivity changes sign, is -0.32 x 10{sup 11} cm{sup -2}, a very low value obtained in Si-based 2D systems. The in-plane magnetoresistivity {rho}(B{sub ip}) was measured in the density range, 0.35 x 10{sup 11} < n < 1.45 x 10{sup 11} cm{sup -2}, where the 2DES shows the metallic-like behavior. It first increases and then saturates to a finite value {rho}(B{sub c}) for B{sub ip}>B{sub c} , with B{sub c} the full spin-polarization field. Surprisingly, {rho}(B{sub c})/{rho}(0)-1.8 for all the densities, even down to n = 0.35 x 10{sup 11} cm{sup -2}, only 10% higher than n{sub c}. This is different from that in clean Si metal-oxide-semiconductor field-effect transistors, where the enhancement is strongly density dependent and {rho}(B{sub c})/{rho}(0) appears to diverge as n {yields} n{sub c}. Finally, we show that in the fully spin-polarized regime, dependent on the 2DES density, the temperature dependence of {rho}(B{sub ip}) can be either metallic-like or insulating.

More Details

Mapping world-wide science at the paper level

Boyack, Kevin W.

This article describes recent improvements in mapping a highly representative set of the world-wide scientific literature. The process described in this article extends existing work in this area in three major ways. First, we argue that a separate structural analysis of current literature vs. reference literature is required for R&D planning. Second, visualization software is used to improve coverage of the literature while maintaining structural integrity. Third, quantitative techniques for measuring the structural integrity of a map are introduced. Maps with high structural integrity, covering far more of the available literature, are presented.

More Details

Time- and space-resolved spectroscopy of dynamic hohlraum interiors

Proposed for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer.

Bailey, James E.; Chandler, Gordon A.; Rochau, G.A.; Slutz, Stephen A.; Lake, Patrick; Lemke, Raymond W.; Mehlhorn, Thomas A.

A dynamic hohlraum is created when an annular z-pinch plasma implodes onto a cylindrical 0.014 g/cc 6-mm-diameter CH{sub 2} foam. The impact launches a radiating shock that propagates toward the axis at {approx}350 {micro}m/ns. The radiation trapped by the tungsten z-pinch plasma forms a {approx}200 eV hohlraum that provides X-rays for indirect drive inertial confinement fusion capsule implosion experiments. We are developing the ability to diagnose the hohlraum interior using emission and absorption spectroscopy of Si atoms added as a tracer to the central portion of the foam. Time- and space-resolved Si spectra are recorded with an elliptical crystal spectrometer viewing the cylindrical hohlraum end-on. A rectangular aperture at the end of the hohlraum restricts the field of view so that the 1D spectrometer resolution corresponds approximately to the hohlraum radial direction. This enables distinguishing between spectra from the unshocked radiation-heated foam and from the shocked foam. Typical spectral lines observed include the Si Ly{alpha} with its He-like satellites and the He-like resonance sequence including He{alpha}, He{beta}, and He{gamma}, along with some of their associated Li-like satellites. Work is in progress to infer the hohlraum conditions using collisional-radiative modeling that accounts for the radiation environment and includes both opacity effects and detailed Stark broadening calculations. These 6-mm-scale radiation-heated plasmas might eventually also prove suitable for testing Stark broadening line profile calculations or for opacity measurements.

More Details

Local mobility in lipid domains of supported bilayers characterized by atomic force microscopy and fluorescence correlation spectroscopy

Proposed for publication in the Biophysical Journal.

Burns, Alan R.; Frankel, Daniel J.

Fluorescence correlation spectroscopy (FCS) is used to examine mobility of labeled probes at specific sites in supported bilayers consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid domains in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). Those sites are mapped beforehand with simultaneous atomic force microscopy and submicron confocal fluorescence imaging, allowing characterization of probe partitioning between gel DPPC and disordered liquid DOPC domains with corresponding topography of domain structure. We thus examine the relative partitioning and mobility in gel and disordered liquid phases for headgroup- and tailgroup-labeled GM1 ganglioside probes and for headgroup- and tailgroup-labeled phospholipid probes. For the GM1 probes, large differences in mobility between fluid and gel domains are observed; whereas unexpected mobility is observed in submicron gel domains for the phospholipid probes. We attribute the latter to domain heterogeneities that could be induced by the probe. Furthermore, fits to the FCS data for the phospholipid probes in the DOPC fluid phase require two components (fast and slow). Although proximity to the glass substrate may be a factor, local distortion of the probe by the fluorophore could also be important. Overall, we observe nonideal aspects of phospholipid probe mobility and partitioning that may not be restricted to supported bilayers.

More Details

Solving elliptic finite element systems in near-linear time with support preconditioners

Proposed for publication in the SIAM Journal on Matrix Analysis.

Boman, Erik G.; Hendrickson, Bruce A.

We consider linear systems arising from the use of the finite element method for solving a certain class of linear elliptic problems. Our main result is that these linear systems, which are symmetric and positive semidefinite, are well approximated by symmetric diagonally dominant matrices. Our framework for defining matrix approximation is support theory. Significant graph theoretic work has already been developed in the support framework for preconditioners in the diagonally dominant case, and in particular it is known that such systems can be solved with iterative methods in nearly linear time. Thus, our approximation result implies that these graph theoretic techniques can also solve a class of finite element problems in nearly linear time. We show that the quality of our approximation, which controls the number of iterations in the preconditioned iterative solver, depends primarily on a mesh quality measure but not on the problem size or shape of the domain.

More Details

Modeling edge singularities in the method of moments

Johnson, William A.

The authors explore various possible approaches for generating lowest order and higher order bases for modeling surface currents and their divergence for moment method application to integral equations. The bases developed are defined on curved triangular and quadrilateral elements. All the bases are conveniently defined in parent element coordinates, and each expansion function spans one or two patches.

More Details

Predicting the importance of current papers

Boyack, Kevin W.

This article examines how well one can predict the importance of a current paper (a paper that is recently published in the literature). We look at three factors--journal importance, reference importance and author reputation. Citation-based measures of importance are used for all variables. We find that journal importance is the best predictor (explaining 22.3% out of a potential 29.1% of the variance in the data), and that this correlation value varies significantly by discipline. Journal importance is a better predictor of citation in Computer Science than in any other discipline. While the finding supports the present policy of using journal impact statistics as a surrogate for the importance of current papers, it calls into question the present policy of equally weighting current documents in text-based analyses. We suggest that future researchers take into account the expected importance of a document when attempting to describe the cognitive structure of a field.

More Details

A scalable parallel graph coloring algorithm for distributed memory computers

Lecture Notes in Computer Science

Boman, Erik G.; Bozdaǧ, Doruk; Catalyurek, Umit; Gebremedhin, Assefaw H.; Manne, Fredrik

In large-scale parallel applications a graph coloring is often carried out to schedule computational tasks. In this paper, we describe a new distributed-memory algorithm for doing the coloring itself in parallel. The algorithm operates in an iterative fashion; in each round vertices are speculatively colored based on limited information, and then a set of incorrectly colored vertices, to be recolored in the next round, is identified. Parallel speedup is achieved in part by reducing the frequency of communication among processors. Experimental results on a PC cluster using up to 16 processors show that the algorithm is scalable. © Springer-Verlag Berlin Heidelberg 2005.

More Details

The usefulness of higher-order constitutive relations for describing the Knudsen layer

Physics of Fluids

Lockerby, Duncan A.; Reese, Jason M.; Gallis, Michael A.

The Knudsen layer is an important rarefaction phenomenon in gas flows in and around microdevices. Its accurate and efficient modeling is of critical importance in the design of such systems and in predicting their performance. In this paper we investigate the potential that higher-order continuum equations may have to model the Knudsen layer, and compare their predictions to high-accuracy DSMC (direct simulation Monte Carlo) data, as well as a standard result from kinetic theory. We find that, for a benchmark case, the most common higher-order continuum equation sets (Grad's 13 moment, Burnett, and super-Burnett equations) cannot capture the Knudsen layer. Variants of these equation families have, however, been proposed and some of them can qualitatively describe the Knudsen layer structure. To make quantitative comparisons, we obtain additional boundary conditions (needed for unique solutions to the higher-order equations) from kinetic theory. However, we find the quantitative agreement with kinetic theory and DSMC data is only slight. © 2005 American Institute of Physics.

More Details

Robust, efficient, optical-damage-resistant, 200 mJ nanosecond ultraviolet light source for satellite-based lidar applications

Materials Research Society Symposium Proceedings

Armstrong, Darrell J.; Smith, Arlee V.

Conventional wisdom contends that high-energy nanosecond UV laser sources operate near the optical damage thresholds of their constituent materials. This notion is particularly true for nonlinear frequency converters like optical parametric oscillators, where poor beam quality combined with high intra-cavity fluence leads to catastrophic failure of crystals and optical coatings. The collective disappointment of many researchers supports this contention. However, we're challenging this frustrating paradigm by developing high-energy nanosecond UV sources that are efficient, mechanically robust, and most important, resistant to optical damage. Based on sound design principles developed through numerical modeling and rigorous laboratory testing, our sources generate 8-10 ns 190 mJ pulses at 320 nm with fluences ≤ 1 J/cm 2. Using the second harmonic of a Q-switched, injection-seeded Nd: YAG laser as the pump source, we convert the near-IR Nd:YAG fundamental to UV with optical-to-optical efficiency exceeding 21%. © 2005 Materials Research Society.

More Details

In situ stress measurements and their implications in a deep Ohio mine

American Rock Mechanics Association - 40th US Rock Mechanics Symposium, ALASKA ROCKS 2005: Rock Mechanics for Energy, Mineral and Infrastructure Development in the Northern Regions

Bauer, Stephen J.; Munson, D.E.; Hardy, M.P.; Barrix, J.; McGunegle, B.

Stress measurements have been obtained from within the Norton Mine in support of site characterization activities intended to determine the in situ stress field around the mine. These results together with other measurements in the area permit an estimate of the principal stresses at the mine. Based on the most recent measurements, the maximum (σHmax) and minimum (σHmin) stresses acting in the horizontal plane are oriented nearly east-west and north-south, respectively, and their magnitudes are 5330 psi and 4100 psi, respectively. These values are expected to be essentially uniform within a few hundred feet vertically above and below the mine elevation. The stress acting in the vertical direction has a magnitude of 3270 psi at the mine level. This measured vertical stress is related to the overburden weight according to σv=1.26ρgh (where ρ is the overburden density, g acceleration of gravity, and h overburden depth). The measured vertical stress exceeds the stress calculated from overburden weight by a factor of 1.26. These in situ stresses are assumed to be principal stresses and, as a result, the vertical stress is the minimum principal stress. These measurements are generally consistent in magnitude and direction with two other much older sets of measurements taken in the mine and they are consistent with the east-west trend of the regional in situ principal stress direction. The average of all three sets of measurements, recent and old, in the mine give a maximum horizontal stress of 6110 psi, a minimum horizontal stress of 3630, and a vertical stress of 3030 psi. The directions of the mine excavation development, which normally are oriented according to the principal stresses, are also consistent with the current and past measurements.

More Details

Laser-induced damage of polycrystalline silicon optically powered MEMS actuators

Proceedings of the ASME/Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems: Advances in Electronic Packaging 2005

Serrano, Justin R.; Phinney, Leslie; Brooks, Carlton F.

Optical MEMS devices are commonly interfaced with lasers for communication, switching, or imaging applications. Dissipation of the absorbed energy in such devices is often limited by dimensional constraints which may lead to overheating and damage of the component. Surface micromachined, optically powered thermal actuators fabricated from two 2.25 μm thick polycrystalline silicon layers were irradiated with 808 nm continuous wave laser light with a 100 μm diameter spot under increasing power levels to assess their resistance to laser-induced damage. Damage occurred immediately after laser irradiation at laser powers above 275 mW and 295 mW for 150 urn diameter circular and 194 urn by 150 μm oval targets, respectively. At laser powers below these thresholds, the exposure time required to damage the actuators increased linearly and steeply as the incident laser power decreased. Increasing the area of the connections between the two polycrystalline silicon layers of the actuator target decreases the extent of the laser damage. Additionally, an optical thermal actuator target with 15 μm × 15 μm posts withstood 326 mW for over 16 minutes without exhibiting damage to the surface. Copyright © 2005 by ASME.

More Details
Results 87276–87300 of 99,299
Results 87276–87300 of 99,299