Face recognition systems require the ability to efficiently scan an existing database of faces to locate a match for a newly acquired face. The large number of faces in real world databases makes computationally intensive algorithms impractical for scanning entire databases. We propose the use of more efficient algorithms to “prescreen” face databases, determining a limited set of likely matches that can be processed further to identify a match. We use both radial symmetry and shape to extract five features of interest on 3D range images of faces. These facial features determine a very small subset of discriminating points which serve as input to a prescreening algorithm based on a Hausdorff fraction. We show how to compute the Haudorff fraction in linear O(n) time using a range image representation. Our feature extraction and prescreening algorithms are verified using the FRGC v1.0 3D face scan data. Results show 97% of the extracted facial features are within 10 mm or less of manually marked ground truth, and the prescreener has a rank 6 recognition rate of 100%.
The fast and unrelenting spread of wireless telecommunication devices has changed the landscape of the telecommunication world, as we know it. Today we find that most users have access to both wireline and wireless communication devices. This widespread availability of alternate modes of communication is adding, on one hand, to a redundancy in networks, yet, on the other hand, has cross network impacts during overloads and disruptions. This being the case, it behooves network designers and service providers to understand how this redundancy works so that it can be better utilized in emergency conditions where the need for redundancy is critical. In this paper, we examine the scope of this redundancy as expressed by telecommunications availability to users under different failure scenarios. We quantify the interaction of wireline and wireless networks during network failures and traffic overloads. Developed as part of a Department of Homeland Security Infrastructure Protection (DHS IP) project, the Network Simulation Modeling and Analysis Research Tool (N-SMART) was used to perform this study. The product of close technical collaboration between the National Infrastructure Simulation and Analysis Center (NISAC) and Lucent Technologies, N-SMART supports detailed wireline and wireless network simulations and detailed user calling behavior.
2nd International Conference on Cybernetics and Information Technologies, Systems and Applications, CITSA 2005, 11th International Conference on Information Systems Analysis and Synthesis, ISAS 2005
Shock Physics codes in use at many Department of Energy (DOE) and Department of Defense (DoD) laboratories can be divided into two classes; Lagrangian Codes (where the computational mesh is (attached' to the materials) and Eulerian Codes (where the computational mesh is (fixed' in space and die materials flow through the mesh). These two classes of codes exhibit different advantages and disadvantages. Lagrangian codes are good at keeping material interfaces well defined, but suffer when the materials undergo extreme distortion which leads to severe reductions in the time steps. Eulerian codes are better able to handle severe material distortion (since the mesh is fixed the time steps are not as severely reduced), but these codes do not keep track of material interfaces very well. So in an Eulerian code the developers must design algorithms to track or reconstruct accurate interfaces between materials as the calculation progresses. However, there are classes of calculations where an interface is not desired between some materials, for instance between materials that are intimately mixed (dusty air or multiphase materials). In these cases a material interface reconstruction scheme is needed that will keep this mixture separated from other materials in the calculation, but will maintain the mixture attributes. This paper will describe the Sandia National Laboratories Eulerian Shock Physics Code known as CTH, and the specialized isotropic material interface reconstruction scheme designed to keep mixed material groups together while keeping different groups separated during the remap step.
American Rock Mechanics Association - 40th US Rock Mechanics Symposium, ALASKA ROCKS 2005: Rock Mechanics for Energy, Mineral and Infrastructure Development in the Northern Regions
Sandia National Laboratories has partnered with industry on a multifaceted, baseline experimental study that supports the development of improved drag cutters for advanced drill bits. Different nonstandard cutter lots were produced and subjected to laboratory tests that evaluated the influence of selected design and processing parameters on cutter loads, wear, and durability pertinent to the penetration of hard rock with mechanical properties representative of formations encountered in geothermal or deep oil/gas drilling environments. The focus was on cutters incorporating ultrahard PDC (polycrystalline diamond compact) overlays (i.e., diamond tables) on tungsten-carbide substrates. Parameter variations included changes in cutter geometry, material composition, and processing conditions. Geometric variables were the diamond-table thickness, the cutting-edge profile, and the PDC/substrate interface configuration. Material and processing variables for the diamond table were, respectively, the diamond particle size and the sintering pressure applied during cutter fabrication. Complementary drop-impact, granite-log abrasion, linear cutting-force, and rotary-drilling tests examined the response of cutters from each lot. Substantial changes in behavior were observed from lot to lot, allowing the identification of features contributing major (factor of 10+) improvements in cutting performance for hard-rock applications. Recent field demonstrations highlight the advantages of employing enhanced cutter technology during challenging drilling operations.
Proceedings of the International Symposium on Superalloys and Various Derivatives
Williamson, Rodney L.; Beaman, Joseph J.; Zanner, Frank J.; Debarbadillo, John J.
The Specialty Metals Processing Consortium (SMPC) was established in 1990 with the goal of advancing the technology of melting and remelting nickel and titanium alloys. In recent years, the SMPC technical program has focused on developing technology to improve control over the final ingot remelting and solidification processes to alleviate conditions that lead to the formation of inclusions and positive and negative segregation. A primary objective is the development of advanced monitoring and control techniques for application to vacuum arc remelting (VAR), with special emphasis on VAR of Alloy 718. This has lead to the development of an accurate, low order electrode melting model for this alloy as well as an advanced process estimator that provides real-time estimates of important process variables such as electrode temperature distribution, instantaneous melt rate, process efficiency, fill ratio, and voltage bias. This, in turn, has enabled the development and industrial application of advanced VAR process monitoring and control systems. The technology is based on the simple idea that the set of variables describing the state of the process must be self-consistent as required by the dynamic process model. The output of the process estimator comprises the statistically optimal estimate of this self-consistent set. Process upsets such as those associated with glows and cracked electrodes are easily identified using estimator based methods.
Proceedings of the ASME/Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems: Advances in Electronic Packaging 2005
Optical firing sets need miniature, robust, reliable pulsed laser sources for a variety of triggering functions. In many cases, these lasers must withstand high transient radiation environments. In this paper we describe a monolithic passively Q-switched microlaser constructed using Cr:Nd:GSGG as the gain material and Cr4+:YAG as the saturable absorber, both of which are radiation hard crystals. This laser consists of a 1-mm-long piece of undoped YAG, a 7-mm-long piece of Cr:Nd:GSGG, and a 1.5-mm-long piece of Cr 4+:YAG diffusion bonded together. The ends of the assembly are polished flat and parallel and dielectric mirrors are coated directly on the ends to form a compact, rugged, monolithic laser. When end pumped with a diode laser emitting at ∼807.6 nm, this passively Q-switched laser produces ∼1.5-ns-wide pulses. While the unpumped flat-flat cavity is geometrically unstable, thermal lensing and gain guiding produce a stable cavity with a TEM00 gaussian output beam over a wide range of operating parameters. The output energy of the laser is scalable and dependent on the cross sectional area of the pump beam. This laser has produced Q-switched output energies from several μJ per pulse to several 100 μJ per pulse with excellent beam quality. Its short pulse length and good beam quality result in high peak power density required for many applications such as optically triggering sprytrons. In this paper we discuss the design, construction, and characterization of this monolithic laser as well as energy scaling of the laser up to several 100 μJ per pulse.
Micro Total Analysis Systems - Proceedings of MicroTAS 2005 Conference: 9th International Conference on Miniaturized Systems for Chemistry and Life Sciences