Publications

Results 86851–86875 of 99,299

Search results

Jump to search filters

Investigation of the spontaneous lateral modulation in short-period superlattices by grazing-incidence x-ray diffraction

Proposed for publication in Physical Review B.

Reno, John L.

The process of spontaneous lateral composition modulation in short-period InAs/AlAs superlattices has been investigated by grazing-incidence x-ray diffraction. We have developed a theoretical description of x-ray scattering from laterally modulated structures that makes it possible to determine the lateral composition modulation directly without assuming any structure model. From experimental intensity distributions in reciprocal space we have determined the amplitudes of the modulation and its degree of periodicity and their dependence on the number of superlattice periods. From the data it follows that the modulation process cannot be explained by bunching of monolayer steps and most likely, it is caused by stress-driven morphological instabilities of the growing surface.

More Details

Effect of threading dislocations on the Bragg peakwidths of GaN, AIGaN, and AIN heterolayers

Proposed for publication in Applied Physics Letters.

Allerman, A.A.; West, Allen W.; Waldrip, Karen E.; Follstaedt, David M.; Provencio, P.N.; Koleske, Daniel

We develop a reciprocal-space model that describes the (hkl) dependence of the broadened Bragg peakwidths produced by x-ray diffraction from a dislocated epilayer. We compare the model to experiments and find that it accurately describes the peakwidths of 16 different Bragg reflections in the [010] zone of both GaN and AlN heterolayers. Using lattice-distortion parameters determined by fitting the model to selected reflections, we estimate threading-dislocation densities for seven different GaN and AlGaN samples and find improved agreement with transmission electron microscopy measurements.

More Details

Structural variants in attempted hetero-epitaxial growth of B12As2 on 6H-SiC (0001)

Proposed for publication in the Journal of Materials Research.

Michael, Joseph R.; Aselage, Terrence L.; Kotula, Paul G.

Boron sub-arsenide, B{sub 12}As{sub 2}, is based on twelve-atom clusters of boron atoms and two-atom As-As chains. By contrast, SiC is a tetrahedrally bonded covalent semiconductor. Despite these fundamental differences, the basal plane hexagonal lattice constant of boron sub-arsenide is twice that of SiC. This coincidence suggests the possibility of heteroepitaxial growth of boron sub-arsenide films on properly aligned SiC. However, there are a variety of incommensurate alignments by which heteroepitaxial growth of B{sub 12}As{sub 2} on (0001) 6H-SiC can occur. In this study, we first used geometrical crystallographic considerations to describe the possible arrangements of B{sub 12}As{sub 2} on (0001) 6H-SiC. We identified four translational and two rotational variants. We then analyzed electron backscattered diffraction and transmission electron microscopy images for evidence of distinct domains of such structural variants. Micron-scale regions with each of the two possible rotational alignments of B{sub 12}As{sub 2} icosahedra with the SiC surface were seen. On a finer length scale (100-300 nm) within these regions, boron-rich boundaries were found, consistent with those between pairs of the four equivalent translational variants associated with a two-to-one lattice match. Boron-carbide reaction layers were also observed at interfaces between SiC and B{sub 12}As{sub 2}.

More Details

Bulk and interfacial behavior of nanoparticle/polymer blends

We have investigated a model athermal system consisting of polystyrene (PS) nanoparticles (NPs) in PS melts. Neutron scattering shows that the chain dimensions expand in the presence of the NPs. We investigate this result theoretically using self-consistent PRISM theory, and also find an expansion in chain dimensions as a function of NP volume fraction. Recently it has been shown that nanoparticles can suppress dewetting in thin polymer films, a counterintuitive result since particles usually induce dewetting. Neutron reflectivity measurements have shown that the NPs phase separate to the surface, so one proposed mechanism for the inhibition of dewetting is that this segregation changes the surface energies. We calculate the density profiles for dilute NPs in polymer melts near a substrate using classical density functional theory, which shows that the NPs do indeed segregate to the surface.

More Details

Comparison of photovoltaic module performance measurements

King, David L.; Kratochvil, Jay A.

Computer simulation tools used to predict the energy production of photovoltaic systems are needed in order to make informed economic decisions. These tools require input parameters that characterize module performance under various operational and environmental conditions. Depending upon the complexity of the simulation model, the required input parameters can vary from the limited information found on labels affixed to photovoltaic modules to an extensive set of parameters. The required input parameters are normally obtained indoors using a solar simulator or flash tester, or measured outdoors under natural sunlight. This paper compares measured performance parameters for three photovoltaic modules tested outdoors at the National Institute of Standards and Technology (NIST) and Sandia National Laboratories (SNL). Two of the three modules were custom fabricated using monocrystalline and silicon film cells. The third, a commercially available module, utilized triple-junction amorphous silicon cells. The resulting data allow a comparison to be made between performance parameters measured at two laboratories with differing geographical locations and apparatus. This paper describes the apparatus used to collect the experimental data, test procedures utilized, and resulting performance parameters for each of the three modules. Using a computer simulation model, the impact that differences in measured parameters have on predicted energy production is quantified. Data presented for each module includes power output at standard rating conditions and the influence of incident angle, air mass, and module temperature on each module's electrical performance. Measurements from the two laboratories are in excellent agreement. The power at standard rating conditions is within 1% for all three modules. Although the magnitude of the individual temperature coefficients varied as much as 17% between the two laboratories, the impact on predicted performance at various temperature levels was minimal, less than 2%. The influence of air mass on the performance of the three modules measured at the laboratories was in excellent agreement. The largest difference in measured results between the two laboratories was noted in the response of the modules to incident angles that exceed 75 deg.

More Details

Monte Carlo molecular simulation predictions for the heat of vaporization of acetone and butyramide

Proposed for publication in Fluid Phase Equilibria.

Martin, Marcus G.

Vapor pressure and heats of vaporization are computed for the industrial fluid properties simulation challenge (IFPSC) data set using the Towhee Monte Carlo molecular simulation program. Results are presented for the CHARMM27 and OPLS-aa force fields. Once again, the average result using multiple force fields is a better predictor of the experimental value than either individual force field.

More Details

A functional designed to include surface effects into self-consistent density-functional theory calculations

Wills, Ann E.

We present an exchange-correlation functional that enables an accurate treatment of systems with electronic surfaces. The functional is developed within the subsystem functional paradigm [1], combining the local density approximation for interior regions with a new functional designed for surface regions. It is validated for a variety of materials by calculations of: (i) properties where surface effects exist, and (ii) established bulk properties. Good and coherent results are obtained, indicating that this functional may serve well as universal first choice for solid state systems. The good performance of this first subsystem functional also suggests that yet improved functionals can be constructed by this approach.

More Details

Building improved functionals for self-consistent DFT by better treatment of electronic surface regions

Wills, Ann E.

We develop a specialized treatment of electronic surface regions which, via the subsystem functional approach [1], can be used in functionals for self-consistent density-functional theory (DFT). Approximations for both exchange and correlation energies are derived for an electronic surface. An interpolation index is used to combine this surface-specific functional with a functional for interior regions. When the local density approximation (LDA) is used for the interior region, the end result is a straightforward density-gradient dependent functional that shows promising results. Further improvement of the treatment of the interior region by the use of a local gradient expansion approximation is also discussed.

More Details

SOAR : science-based weld software for optimal automatic welding procedures

Fuerschbach, Phillip W.; Eisler, G.R.

The two primary uses for SOAR are: (1) Predictive--(i) Science based process models enable optimized automated weld procedures, (ii) virtual manufacturing enables the user to ask 'what if' and quickly find the answer, (iii) with SOAR, multiple welds do not need to be made in order to determine weld effects and required parameters; and (2) Investigative--(i) welding problem mysteries can be solved by gathering evidence, identifying problem suspects, and testing with SOAR; (ii) most SOAR models are universal and can be applied to many different weld processes; and (iii) understand your welding process.

More Details

Fluorescent detection of apoptotic cells using a family of zinc coordination complexes with selective affinity for membrane surfaces that are enriched with phosphatidylserine

Proposed for publication in European Journal of Chemical Biology (ChemBioChem).

Lambert, Timothy N.

The appearance of phosphatidylserine on the membrane surface of apoptotic cells (Jurkat, CHO, HeLa) is monitored by using a family of bis(Zn{sup 2+}-2,2{prime}-dipicolylamine) coordination compounds with appended fluorescein or biotin groups as reporter elements. The phosphatidylserine affinity group is also conjugated directly to a CdSe/CdS quantum dot to produce a probe suitable for prolonged observation without photobleaching. Apoptosis can be detected under a wide variety of conditions, including variations in temperature, incubation time, and binding media. Binding of each probe appears to be restricted to the cell membrane exterior, because no staining of organelles or internal membranes is observed.

More Details
Results 86851–86875 of 99,299
Results 86851–86875 of 99,299