Optimization-ready reduced-order models should target a particular output functional, span an applicable range of dynamic and parametric inputs, and respect the underlying governing equations of the system. To achieve this goal, we present an approach for determining a projection basis that uses a goal-oriented, model-based optimization framework. The mathematical framework permits consideration of general dynamical systems with general parametric variations. The methodology is applicable to both linear and nonlinear systems and to systems with many input parameters. This paper focuses on an initial presentation and demonstration of the methodology on a simple linear model problem of the two-dimensional, time-dependent heat equation with a small number of inputs. For this example, the reduced models determined by the new approach provide considerable improvement over those derived using the proper orthogonal decomposition.
Ohmic contacts on p-type GaN utilizing Pd/Ir/Au metallization were fabricated and characterized. Metallized samples that were rapid thermally annealed at 400 C for 1 min exhibited linear current-voltage characteristics. Specific ohmic contact resistivities as low as 2 x 10{sup -5} {Omega} cm{sup 2} were achieved. Auger electron spectroscopy and x-ray photoelectron spectroscopy depth profiles of annealed Pd/Ir/Au contact revealed the formation of Pd- and Ir-related alloys at the metal-semiconductor junction with the creation of Ga vacancies below the contact. The excellent contact resistance obtained is attributed to the formation of these Ga vacancies which resulted in the reduction of the depletion region width at the junction.
The performance and reliability of microelectromechanical (MEMS) devices can be highly dependent on the control of the surface energetics in these structures. Examples of this sensitivity include the use of surface modifying chemistries to control stiction, to minimize friction and wear, and to preserve favorable electrical characteristics in surface micromachined structures. Silane modification of surfaces is one classic approach to controlling stiction in Si-based devices. The time-dependent efficacy of this modifying treatment has traditionally been evaluated by studying the impact of accelerated aging on device performance and conducting subsequent failure analysis. Our interest has been in identifying aging related chemical signatures that represent the early stages of processes like silane displacement or chemical modification that eventually lead to device performance changes. We employ a series of classic surface characterization techniques along with multivariate statistical methods to study subtle changes in the silanized silicon surface and relate these to degradation mechanisms. Examples include the use of spatially resolved time-of-flight secondary ion mass spectrometric, photoelectron spectroscopic, photoluminescence imaging, and scanning probe microscopic techniques to explore the penetration of water through a silane monolayer, the incorporation of contaminant species into a silane monolayer, and local displacement of silane molecules from the Si surface. We have applied this analytical methodology at the Si coupon level up to MEMS devices. This approach can be generalized to other chemical systems to address issues of new materials integration into micro- and nano-scale systems.
Poly(N-isopropyl acrylamide) (PNIPAM) is perhaps the most well known member of the class of responsive polymers. Free PNIPAM chains have a lower critical solution temperature in water at {approx}31 C. This very sharp transition ({approx}5 C) is attributed to alterations in the hydrogen bonding interactions of the amide group. Grafted chains of PNIPAM have shown promise for creating responsive surfaces. Examples include controlling the adsorption of proteins or bacteria, regulating the flow of liquids in narrow filaments or mesoporous materials, control of enzymatic activity, and releasing the contents of liposomes. Conformational changes of the polymer are likely to play a role in some of these applications, in addition to changes in local interactions. In this work we investigated the T-dependent conformational changes of grafted PNIPAM chains in D2O using neutron reflection and AFM. The molecular weight (M) and surface density of the PNIPAM brushes were controlled using atom-transfer radical polymerization. We discovered a strong effect of surface density. At lower surface densities, in the range typically achieved with grafting-to methods, we observed very little conformational change. At higher surface densities, significant changes with T were observed. The results will be compared with numerical SCF calculations employing an effective (conc.-dependent) Flory-Huggins chi parameter extracted from the solution phase diagram. For the case of high M and high surface density, a non-monotonic change in profile shape with T was observed. This will be discussed in the context of vertical phase separation predicted for brushes of water-soluble polymers within two-state models.
Our study (1) reported on the deformation response of nanocrystalline Ni during in situ dark-field transmission electron microscopy (DFTEM) straining experiments and showed what we view as direct and compelling evidence of grain boundary-mediated plasticity. Based on their analysis of the limited experimental data we presented, however, Chen and Yan (2) propose that the reported contrast changes more likely resulted from grain growth caused by electron irradiation and applied stress rather than from plastic deformation. Here, we give specific reasons why their assertions are incorrect and discuss how the measurement approaches they have used are inappropriate. Additionally, we present further evidence that supports our original conclusions. The method Chen and Yan employed to measure displacement merely probes the in-plane (two-dimensional) components of incremental strain occurring during the very short time interval shown [figure 3 in (1)] instead of the accumulated strain. As we noted explicitly in the supporting online material in (1), the loading was applied by pulsing the displacement manually. After each small displacement pulse, the monitored area always moved significantly within or even out of the field of view. Clear images could be obtained only when the sample position stabilized within the field of view, and at that time severe deformation was nearly complete. Thus, little incremental strain occurs during this short image sequence [figure 3 in (1)], as one might expect. We believe that the images shown in figure 3 of (1) are particularly valuable in understanding deformation in nanocrystalline materials. In general, the formation process of grain agglomerates simply occurred too fast to be recorded clearly. Moreover, instead of remaining constant after formation, the sizes of the grain agglomerates changed in a rather irregular manner in responding to the deformation and fracture process (see, for example, Fig. 1, B to D). This indicates that strong grain boundary-related activity occurred inside the grain agglomerates. Figure 3 in (1), a short (0.5 s) extract from more than 6 hours of videotaped experimentation (imaged ahead of cracks), not only reveals the formation process of a grain agglomerate, but also shows conclusive evidence for grain rotation and excludes the effect of overall sample rotation. It should be noted that other small grains still exhibit some minor contrast changes in figure 3 in (1). Hence, using them as reference points yields measurements that may not be accurate to {+-}1 nm [as Chen and Yan (2) claim in their analysis] and limits the accuracy of their conclusions. Chen and Yan also claim that no deformation has occurred, yet simultaneously state that the analysis has a deformation measurement error of 0.5%. This is simply not consistent; even small strains of this order may cause plastic deformation. In contrast with previous in situ TEM experiments (3-5), the special sample design adopted in our investigation (1) ensured that all deformation was primarily concentrated in a bandlike area ahead of the propagating crack. We found that these grain agglomerates were observed only in this bandlike thinning area as a response to the applied loads (Fig. 1B). No similar phenomena were detected under the electron beam alone or in stressed areas apart from the main deformation area, and these phenomena have not been reported during in situ observations of this same material made by other researchers (5). Subsequent cracks were always observed to follow this deformation area upon further displacement pulses (Fig. 1, C and D). This clearly indicates that the enlarged agglomerates do not result simply from electron irradiation plus stress, but rather from stress-induced deformation. In their comment, Chen and Yan claimed a linear relation between 'grain' area and time based on their measurements made from figure 3 in (1) and claimed that these measurements are exactly consistent with the classical grain growth equation. However, as we noted (1), the growth in size of this agglomerate is not isotropic and occurs in an irregular manner. For example, after bright contrast emerged from a grain about 6 nm in diameter, it remained well defined in size as a single, approximately equiaxed grain until t = 0.1 s (fig. S1). We have reproduced the 'grain growth' plot of Chen and Yan (Fig. 2) using our entire video image sequence (fig. S1). Clearly, the growth in area of the agglomerate is not consistent with linear grain growth. (Unfortunately, only a portion of these data could be included in the original paper for reasons of space.) Notably, Chen and Yan did not apply a similar 'grain growth' analysis to nearby grains; this would have yielded no information in support of their argument, as those grains show essentially no growth.
This paper surveys the needs associated with environmental monitoring and long-term environmental stewardship. Emerging sensor technologies are reviewed to identify compatible technologies for various environmental monitoring applications. The contaminants that are considered in this report are grouped into the following categories: (1) metals, (2) radioisotopes, (3) volatile organic compounds, and (4) biological contaminants. United States regulatory drivers are evaluated for different applications (e.g., drinking water, storm water, pretreatment, and air emissions), and sensor requirements are derived from these regulatory metrics. Sensor capabilities are then summarized according to contaminant type, and the applicability of the different sensors to various environmental monitoring applications is discussed.
How might the quality of a city's delivered water be compromised through natural or malevolent causes? What are the consequences of a contamination event? What water utility assets are at greatest risk to compromise? Utility managers have been scrambling to find answers to these questions since the events of 9/11. However, even before this date utility mangers were concerned with the potential for system contamination through natural or accidental causes. Unfortunately, an integrated tool for assessing both the threat of attack/failure and the subsequent consequence is lacking. To help with this problem we combine Markov Latent Effects modeling for performing threat assessment calculations with the widely used pipe hydraulics/transport code, EPANET, for consequences analysis. Together information from these models defines the risk posed to the public due to natural or malevolent contamination of a water utility system. Here, this risk assessment framework is introduced and demonstrated within the context of vulnerability assessment for water distribution systems.
An S-band 20 MeV electron linear accelerator formerly used for medical applications has been recommissioned to provide a wide range of photonuclear activation studies as well as various radiation effects on biological and microelectronic systems. Four radiation effect applications involving the electron/photon beams are described. Photonuclear activation of a stable isotope of oxygen provides an active means of characterizing polymer degradation. Biological irradiations of microorganisms including bacteria were used to study total dose and dose-rate effects on survivability and the adaptation of these organisms to repeated exposures. Microelectronic devices including bipolar junction transistors (BJTs) and diodes were irradiated to study photocurrent from these devices as a function of peak dose rate with comparisons to computer modeling results. In addition, the 20 MeV linac may easily be converted to a medium energy neutron source which has been used to study neutron damage effects on transistors.