Publications

Results 85126–85150 of 99,299

Search results

Jump to search filters

Ultra high temperature ceramics for hypersonic vehicle applications

Loehman, Ronald E.; Corral, Erica L.; Kotula, Paul G.; Tandon, Rajan

HfB{sub 2} and ZrB{sub 2} are of interest for thermal protection materials because of favorable thermal stability, mechanical properties, and oxidation resistance. We have made dense diboride ceramics with 2 to 20 % SiC by hot pressing at 2000 C and 5000 psi. High-resolution transmission electron microscopy (TEM) shows very thin grain boundary phases that suggest liquid phase sintering. Fracture toughness measurements give RT values of 4 to 6 MPam{sup 1/2}. Four-pt flexure strengths measured in air up to 1450 C were as high as 450-500 MPa. Thermal diffusivities were measured to 2000 C for ZrB{sub 2} and HfB{sub 2} ceramics with SiC contents from 2 to 20%. Thermal conductivities were calculated from thermal diffusivities and measured heat capacities. Thermal diffusivities were modeled using different two-phase composite models. These materials exhibit excellent high temperature properties and are attractive for further development for thermal protection systems.

More Details

Polymer electronic devices and materials

Wheeler, David R.; Dirk, Shawn M.; Schubert, William K.; Anderson, G.R.; Baca, Paul M.

Polymer electronic devices and materials have vast potential for future microsystems and could have many advantages over conventional inorganic semiconductor based systems, including ease of manufacturing, cost, weight, flexibility, and the ability to integrate a wide variety of functions on a single platform. Starting materials and substrates are relatively inexpensive and amenable to mass manufacturing methods. This project attempted to plant the seeds for a new core competency in polymer electronics at Sandia National Laboratories. As part of this effort a wide variety of polymer components and devices, ranging from simple resistors to infrared sensitive devices, were fabricated and characterized. Ink jet printing capabilities were established. In addition to promising results on prototype devices the project highlighted the directions where future investments must be made to establish a viable polymer electronics competency.

More Details

A Bayesian method for characterizing distributed micro-releases: II. inference under model uncertainty with short time-series data

Marzouk, Youssef M.

Terrorist attacks using an aerosolized pathogen preparation have gained credibility as a national security concern after the anthrax attacks of 2001. The ability to characterize such attacks, i.e., to estimate the number of people infected, the time of infection, and the average dose received, is important when planning a medical response. We address this question of characterization by formulating a Bayesian inverse problem predicated on a short time-series of diagnosed patients exhibiting symptoms. To be of relevance to response planning, we limit ourselves to 3-5 days of data. In tests performed with anthrax as the pathogen, we find that these data are usually sufficient, especially if the model of the outbreak used in the inverse problem is an accurate one. In some cases the scarcity of data may initially support outbreak characterizations at odds with the true one, but with sufficient data the correct inferences are recovered; in other words, the inverse problem posed and its solution methodology are consistent. We also explore the effect of model error-situations for which the model used in the inverse problem is only a partially accurate representation of the outbreak; here, the model predictions and the observations differ by more than a random noise. We find that while there is a consistent discrepancy between the inferred and the true characterizations, they are also close enough to be of relevance when planning a response.

More Details

LDRD final report on high power broadly tunable Mid-IR quantum cascade lasers for improved chemical species detection

Young, Erik W.; Wanke, Michael C.; Klem, John F.; Fuller, Charles T.; Hudgens, James J.

The goal of our project was to examine a novel quantum cascade laser design that should inherently increase the output power of the laser while simultaneously providing a broad tuning range. Such a laser source enables multiple chemical species identification with a single laser and/or very broad frequency coverage with a small number of different lasers, thus reducing the size and cost of laser based chemical detection systems. In our design concept, the discrete states in quantum cascade lasers are replaced by minibands made of multiple closely spaced electron levels. To facilitate the arduous task of designing miniband-to-miniband quantum cascade lasers, we developed a program that works in conjunction with our existing modeling software to completely automate the design process. Laser designs were grown, characterized, and iterated. The details of the automated design program and the measurement results are summarized in this report.

More Details

Human performance modeling for system of systems analytics: combat performance-shaping factors

Miller, Dwight P.; Lawton, Craig

The US military has identified Human Performance Modeling (HPM) as a significant requirement and challenge of future systems modeling and analysis initiatives. To support this goal, Sandia National Laboratories (SNL) has undertaken a program of HPM as an integral augmentation to its system-of-system (SoS) analytics capabilities. The previous effort, reported in SAND2005-6569, evaluated the effects of soldier cognitive fatigue on SoS performance. The current effort began with a very broad survey of any performance-shaping factors (PSFs) that also might affect soldiers performance in combat situations. The work included consideration of three different approaches to cognition modeling and how appropriate they would be for application to SoS analytics. This bulk of this report categorizes 47 PSFs into three groups (internal, external, and task-related) and provides brief descriptions of how each affects combat performance, according to the literature. The PSFs were then assembled into a matrix with 22 representative military tasks and assigned one of four levels of estimated negative impact on task performance, based on the literature. Blank versions of the matrix were then sent to two ex-military subject-matter experts to be filled out based on their personal experiences. Data analysis was performed to identify the consensus most influential PSFs. Results indicate that combat-related injury, cognitive fatigue, inadequate training, physical fatigue, thirst, stress, poor perceptual processing, and presence of chemical agents are among the PSFs with the most negative impact on combat performance.

More Details

The strain-rate sensitivity of high-strength high-toughness steels

Boyce, Brad L.; Crenshaw, Thomas B.

The present study examines the strain-rate sensitivity of four high strength, high-toughness alloys at strain rates ranging from 0.0002 s-1 to 200 s-1: Aermet 100, a modified 4340, modified HP9-4-20, and a recently developed Eglin AFB steel alloy, ES-1c. A refined dynamic servohydraulic method was used to perform tensile tests over this entire range. Each of these alloys exhibit only modest strain-rate sensitivity. Specifically, the strain-rate sensitivity exponent m, is found to be in the range of 0.004-0.007 depending on the alloy. This corresponds to a {approx}10% increase in the yield strength over the 7-orders of magnitude change in strain-rate. Interestingly, while three of the alloys showed a concominant {approx}3-10% drop in their ductility with increasing strain-rate, the ES1-c alloy actually exhibited a 25% increase in ductility with increasing strain-rate. Fractography suggests the possibility that at higher strain-rates ES-1c evolves towards a more ductile dimple fracture mode associated with microvoid coalescence.

More Details

Wavefront curvature limitations and compensation to polar format processing for synthetic aperture radar images

Doerry, Armin W.

Limitations on focused scene size for the Polar Format Algorithm (PFA) for Synthetic Aperture Radar (SAR) image formation are derived. A post processing filtering technique for compensating the spatially variant blurring in the image is examined. Modifications to this technique to enhance its robustness are proposed.

More Details

Performance testing of aged hydrogen getters against criteria for interim safe storage of plutonium bearing materials

Nissen, April E.H.; Buffleben, George M.; Shepodd, Timothy J.

Hydrogen getters were tested for use in storage of plutonium-bearing materials in accordance with DOE's Criteria for Interim Safe Storage of Plutonium Bearing Materials. The hydrogen getter HITOP was aged for 3 months at 70 C and tested under both recombination and hydrogenation conditions at 20 and 70 C; partially saturated and irradiated aged getter samples were also tested. The recombination reaction was found to be very fast and well above the required rate of 45 std. cc H2h. The gettering reaction, which is planned as the backup reaction in this deployment, is slower and may not meet the requirements alone. Pressure drop measurements and {sup 1}H NMR analyses support these conclusions. Although the experimental conditions do not exactly replicate the deployment conditions, the results of our conservative experiments are clear: the aged getter shows sufficient reactivity to maintain hydrogen concentrations below the flammability limit, between the minimum and maximum deployment temperatures, for three months. The flammability risk is further reduced by the removal of oxygen through the recombination reaction. Neither radiation exposure nor thermal aging sufficiently degrades the getter to be a concern. Future testing to evaluate performance for longer aging periods is in progress.

More Details

Design and manufacturing of complex optics: the dragonfly eye optic

Gill, David D.; Sweatt, W.C.; Claudet, Andre; Hodges, V.C.; Adams, David P.

The ''Design and Manufacturing of Complex Optics'' LDRD sought to develop new advanced methods for the design and manufacturing of very complex optical systems. The project team developed methods for including manufacturability into optical designs and also researched extensions of manufacturing techniques to meet the challenging needs of aspherical, 3D, multi-level lenslet arrays on non-planar surfaces. In order to confirm the applicability of the developed techniques, the team chose the Dragonfly Eye optic as a testbed. This optic has arrays of aspherical micro-lenslets on both the exterior and the interior of a 4mm diameter hemispherical shell. Manufacturing of the dragonfly eye required new methods of plunge milling aspherical optics and the development of a method to create the milling tools using focused ion beam milling. The team showed the ability to create aspherical concave milling tools which will have great significance to the optical industry. A prototype dragonfly eye exterior was created during the research, and the methods of including manufacturability in the optical design process were shown to be successful as well.

More Details

Edge energies and shapes of nanoprecipitates

Hamilton, John C.

In this report we present a model to explain the size-dependent shapes of lead nano-precipitates in aluminum. Size-dependent shape transitions, frequently observed at nanolength scales, are commonly attributed to edge energy effects. This report resolves an ambiguity in the definition and calculation of edge energies and presents an atomistic calculation of edge energies for free clusters. We also present a theory for size-dependent shapes of Pb nanoprecipitates in Al, introducing the concept of ''magic-shapes'' defined as precipitate shapes having near zero elastic strains when inserted into similarly shaped voids in the Al matrix. An algorithm for constructing a complete set of magic-shapes is presented. The experimental observations are explained by elastic strain energies and interfacial energies; edge energies play a negligible role. We replicate the experimental observations by selecting precipitates having magic-shapes and interfacial energies less than a cutoff value.

More Details

Analytic and computational micromechanics of clustering and interphase effects in carbon nanotube composites

Hammerand, Daniel C.

Effective elastic properties for carbon nanotube reinforced composites are obtained through a variety of micromechanics techniques. Using the in-plane elastic properties of graphene, the effective properties of carbon nanotubes are calculated utilizing a composite cylinders micromechanics technique as a first step in a two-step process. These effective properties are then used in the self-consistent and Mori-Tanaka methods to obtain effective elastic properties of composites consisting of aligned single or multi-walled carbon nanotubes embedded in a polymer matrix. Effective composite properties from these averaging methods are compared to a direct composite cylinders approach extended from the work of Hashin and Rosen (1964) and Christensen and Lo (1979). Comparisons with finite element simulations are also performed. The effects of an interphase layer between the nanotubes and the polymer matrix as result of functionalization is also investigated using a multi-layer composite cylinders approach. Finally, the modeling of the clustering of nanotubes into bundles due to interatomic forces is accomplished herein using a tessellation method in conjunction with a multi-phase Mori-Tanaka technique. In addition to aligned nanotube composites, modeling of the effective elastic properties of randomly dispersed nanotubes into a matrix is performed using the Mori-Tanaka method, and comparisons with experimental data are made. Computational micromechanical analysis of high-stiffness hollow fiber nanocomposites is performed using the finite element method. The high-stiffness hollow fibers are modeled either directly as isotropic hollow tubes or equivalent transversely isotropic effective solid cylinders with properties computed using a micromechanics based composite cylinders method. Using a representative volume element for clustered high-stiffness hollow fibers embedded in a compliant matrix with the appropriate periodic boundary conditions, the effective elastic properties are obtained from the finite element results. These effective elastic properties are compared to approximate analytical results found using micromechanics methods. The effects of an interphase layer between the high-stiffness hollow fibers and matrix to simulate imperfect load transfer and/or functionalization of the hollow fibers is also investigated and compared to a multi-layer composite cylinders approach. Finally the combined effects of clustering with fiber-matrix interphase regions are studied. The parametric studies performed herein were motivated by and used properties for single-walled carbon nanotubes embedded in an epoxy matrix, and as such are intended to serve as a guide for continuum level representations of such nanocomposites in a multi-scale modeling approach.

More Details

Geologic technical assessment of the Richton salt dome, Mississippi, for potential expansion of the U.S. strategic petroleum reserve

Lord, Anna S.; Rautman, Christopher A.

Technical assessment and remodeling of existing data indicates that the Richton salt dome, located in southeastern Mississippi, appears to be a suitable site for expansion of the U.S. Strategic Petroleum Reserve. The maximum area of salt is approximately 7 square miles, at a subsurface elevation of about -2000 ft, near the top of the salt stock. Approximately 5.8 square miles of this appears suitable for cavern development, because of restrictions imposed by modeled shallow salt overhang along several sides of the dome. The detailed geometry of the overhang currently is only poorly understood. However, the large areal extent of the Richton salt mass suggests that significant design flexibility exists for a 160-million-barrel storage facility consisting of 16 ten-million-barrel caverns. The dome itself is prominently elongated from northwest to southeast. The salt stock appears to consist of two major spine features, separated by a likely boundary shear zone trending from southwest to northeast. The dome decreases in areal extent with depth, because of salt flanks that appear to dip inward at 70-80 degrees. Caprock is present at depths as shallow as 274 ft, and the shallowest salt is documented at -425 ft. A large number of existing two-dimensional seismic profiles have been acquired crossing, and in the vicinity of, the Richton salt dome. At least selected seismic profiles should be acquired, examined, potentially reprocessed, and interpreted in an effort to understand the limitations imposed by the apparent salt overhang, should the Richton site be selected for actual expansion of the Reserve.

More Details

Modeling and simulation technology readiness levels

Clay, Robert L.; Marburger, Scot J.; Shneider, Max S.; Trucano, Timothy G.

This report summarizes the results of an effort to establish a framework for assigning and communicating technology readiness levels (TRLs) for the modeling and simulation (ModSim) capabilities at Sandia National Laboratories. This effort was undertaken as a special assignment for the Weapon Simulation and Computing (WSC) program office led by Art Hale, and lasted from January to September 2006. This report summarizes the results, conclusions, and recommendations, and is intended to help guide the program office in their decisions about the future direction of this work. The work was broken out into several distinct phases, starting with establishing the scope and definition of the assignment. These are characterized in a set of key assertions provided in the body of this report. Fundamentally, the assignment involved establishing an intellectual framework for TRL assignments to Sandia's modeling and simulation capabilities, including the development and testing of a process to conduct the assignments. To that end, we proposed a methodology for both assigning and understanding the TRLs, and outlined some of the restrictions that need to be placed on this process and the expected use of the result. One of the first assumptions we overturned was the notion of a ''static'' TRL--rather we concluded that problem context was essential in any TRL assignment, and that leads to dynamic results (i.e., a ModSim tool's readiness level depends on how it is used, and by whom). While we leveraged the classic TRL results from NASA, DoD, and Sandia's NW program, we came up with a substantially revised version of the TRL definitions, maintaining consistency with the classic level definitions and the Predictive Capability Maturity Model (PCMM) approach. In fact, we substantially leveraged the foundation the PCMM team provided, and augmented that as needed. Given the modeling and simulation TRL definitions and our proposed assignment methodology, we conducted four ''field trials'' to examine how this would work in practice. The results varied substantially, but did indicate that establishing the capability dependencies and making the TRL assignments was manageable and not particularly time consuming. The key differences arose in perceptions of how this information might be used, and what value it would have (opinions ranged from negative to positive value). The use cases and field trial results are included in this report. Taken together, the results suggest that we can make reasonably reliable TRL assignments, but that using those without the context of the information that led to those results (i.e., examining the measures suggested by the PCMM table, and extended for ModSim TRL purposes) produces an oversimplified result--that is, you cannot really boil things down to just a scalar value without losing critical information.

More Details

Experiments for calibration and validation of plasticity and failure material modeling: 304L stainless steel

Lee, Kenneth L.; Korellis, John S.

Experimental data for material plasticity and failure model calibration and validation were obtained from 304L stainless steel. Model calibration data were taken from smooth tension, notched tension, and compression tests. Model validation data were provided from experiments using thin-walled tube specimens subjected to path dependent combinations of internal pressure, extension, and torsion.

More Details

Efficient all-solid-state UV lidar sources: From 100's of millijoules to 100's of microjoules

Proceedings of SPIE - The International Society for Optical Engineering

Armstrong, Darrell J.; Smith, Arlee V.

Sandia National Laboratories has developed high-energy all-solid-state UV sources for use in laboratory tests of the feasibility of satellite-based ozone DIAL. These sources generate 320 nm light by sum-frequency mixing the 532 nm second harmonic of an Nd:YAG laser with the 803 nm signal light derived from a self-injection-seeded image-rotating optical parametric oscillator (OPO). The OPO cavity utilizes the RISTRA geometry, denoting rotated-image singly-resonant twisted rectangle. Two configurations were developed, one using extra-cavity sum-frequency mixing, where the sum-frequency-generation (SFG) crystal is outside the OPO cavity, and the other intra-cavity mixing, where the SFG crystal is placed inside the OPO cavity. Our goal was to obtain 200 mJ, 10 ns duration, 320 nm pulses at 10 Hz with near-IR to UV (1064 nm to 320 nm) optical conversion efficiency of 25%. To date we've obtained 190 mJ at 320 nm using extra-cavity SFG with 21% efficiency, and > 140 mJ by intra-cavity SFG with efficiency approaching 24%. While these results are encouraging, we've determined our conversion efficiency can be enhanced by replacing self-seeding at the signal wavelength of 803 nm with pulsed idler seeding at 1576 nm. By switching to idler seeding and increasing the OPO cavity dimensions to accommodate flat-top beams with diameters up to 10 mm, we expect to generate UV energies approaching 300 mJ with optical conversion efficiency approaching 25%. While our technology was originally designed to obtain high pulse energies, it can also be used to generate low-energy UV pulses with high efficiency. Numerical simulations using an idler-seeded intra-cavity SFG RISTRA OPO scaled to half its nominal dimensions yielded 560 μJ of 320 nm light from 2 mJ of 532 nm pump using an idler-seed energy of 100 μJ.

More Details

Segmenting clouds from space: A hybrid multispectral classification algorithm for satellite imagery

Proceedings of SPIE - The International Society for Optical Engineering

Wilson, Mark P.; Nandy, Prabal; Post, Brian N.; Smith, Jody; Wehlburg, Joseph C.

This paper reports on a novel approach to atmospheric cloud segmentation from a space based multi-spectral pushbroom satellite system. The satellite collects 15 spectral bands ranging from visible, 0.45 urn, to long wave in fared (IR), 10.7um. The images are radiometrically calibrated and have ground sample distances (GSD) of 5 meters for visible to very near IR bands and a GSD of 20 meters for near IR to long wave IR. The algorithm consists of a hybrid-classification system in the sense that supervised and unsupervised networks are used in conjunction. For performance evaluation, a series of numerical comparisons to human derived cloud borders were performed. A set of 33 scenes were selected to represent various climate zones with different land cover from around the world. The algorithm consisted of the following. Band separation was performed to find the band combinations which form significant separation between cloud and background classes. The potential bands are fed into a K-Means clustering algorithm in order to identify areas in the image which have similar centroids. Each cluster is then compared to the cloud and background prototypes using the Jeffries-Matusita distance. A minimum distance is found and each unknown cluster is assigned to their appropriate prototype. A classification rate of 88% was found when using one short wave IR band and one midwave IR band. Past investigators have reported segmentation accuracies ranging from 67% to 80%, many of which require human intervention. A sensitivity of 75% and specificity of 90% were reported as well.

More Details

Scaling of domain size during spinodal decomposition: Dislocation discreteness and mobility effects

Applied Physics Letters

Haataja, Mikko; Mahon, Jennifer; Provatas, Nikolas; Leonard, Francois

In this letter, we examine the effects of discrete mobile dislocations on spinodal decomposition kinetics in lattice mismatched binary alloys. By employing a novel continuum model, we demonstrate that the effects of dislocation mobility on domain coarsening kinetics can be expressed in a unified manner through a scaling function, describing a crossover from t12 to t13 behavior. © 2005 American Institute of Physics.

More Details

Numerical analyses of locomotive impacts on a spent fuel truck cask and trailer

American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP

Ammerman, Douglas; Stevens, Dave; Barsotti, Matt

During the transportation of spent nuclear fuel by truck, the possibility exists that a train could run into the spent fuel cask at a grade crossing. Sandia National Laboratories has conducted a numerical study to assess the possibility of cask breach or material release in the event of a high-speed, broadside locomotive collision. A numerical approach has the advantage over conducting a physical test as was done in the 1970s [1] in that varying parameters can be examined. For example, one of the criticisms of the 1970s test was the height of the cask. In the test, the centerline of the cask was above the main frame-rails of the locomotive. In this study the position of the cask with respect to the locomotive was varied. The response of the cask and trailer in different collision scenarios was modeled numerically with LS-DYNA [2]. The simulations were performed as a collaborative endeavor between Sandia National Laboratories (SNL), Applied Research Associates, Inc. (ARA) and Foster-Miller, Inc (FMI). ARA developed the GA-4 Spent Fuel Cask and Cask Transporter models described in this report. These models were then combined with two existing FMI heavy freight locomotive finite element models to create the overall simulation scenarios. The modeling effort, results, and conclusions are presented in this paper. Copyright © 2005 by ASME.

More Details

Semi-infinite target penetration by ogive-nose penetrators: ALEGRA/SHISM code predictions for ideal and non-ideal impacts

American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP

Bishop, Joseph E.; Voth, Thomas E.; Brown, Kevin H.

The physics of ballistic penetration mechanics is of great interest in penetrator and counter-measure design. The phenomenology associated with these events can be quite complex and a significant number of studies have been conducted ranging from purely experimental to 'engineering' models based on empirical and/or analytical descriptions to fully-coupled penetrator/target, thermo-mechanical numerical simulations. Until recently, however, there appears to be a paucity of numerical studies considering 'non-ideal' impacts [1]. The goal of this work is to demonstrate the SHISM algorithm implemented in the ALEGRA Multi-Material ALE (Arbitrary Lagrangian Eulerian) code [13]. The SHISM algorithm models the three-dimensional continuum solid mechanics response of the target and penetrator in a fully coupled manner. This capability allows for the study of 'non-ideal' impacts (e.g. pitch, yaw and/or obliquity of the target/penetrator pair). In this work predictions using the SHISM algorithm are compared to previously published experimental results for selected ideal and non-ideal impacts of metal penetrator-target pairs. These results show good agreement between predicted and measured maximum depth-of-penetration, DOP, for ogive-nose penetrators with striking velocities in the 0.5 to 1.5 km/s range. Ideal impact simulations demonstrate convergence in predicted DOP for the velocity range considered. A theory is advanced to explain disagreement between predicted and measured DOP at higher striking velocities. This theory postulates uncertainties in angle-of-attack for the observed discrepancies. It is noted that material models and associated parameters used here, were unmodified from those in the literature. Hence, no tuning of models was performed to match experimental data. Copyright © 2005 by ASME.

More Details

Kevlar and Carbon Composite body armor - Analysis and testing

American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP

Uekert, Vanessa S.; Stofleth, Jerome H.; Preece, Dale S.; Risenmay, Matthew A.

Kevlar materials make excellent body armor due to their fabric-like flexibility and ultra-high tensile strength. Carbon composites are made up from many layers of carbon AS-4 material impregnated with epoxy. Fiber orientation is bidirectional, orientated at 0° and 90°. They also have ultra-high tensile strength but can be made into relatively hard armor pieces. Once many layers are cut and assembled they can be ergonomicically shaped in a mold during the heated curing process. Kevlar and carbon composites can be used together to produce light and effective body armor. This paper will focus on computer analysis and laboratory testing of a Kevlar/carbon composite cross-section proposed for body armor development. The carbon composite is inserted between layers of Kevlar. The computer analysis was performed with a Lagrangian transversely Isotropic material model for both the Kevlar and Carbon Composite. The computer code employed is AUTODYN. Both the computer analysis and laboratory testing utilized different fragments sizes of hardened steel impacting on the armor cross-section. The steel fragments are right-circular cylinders. Laboratory testing was undertaken by firing various sizes of hardened steel fragments at square test coupons of Kevlar layers and heat cured carbon composites. The V50 velocity for the various fragment sizes was determined from the testing. This V50 data can be used to compare the body armor design with other previously designed armor systems. AUTODYN [1] computer simulations of the fragment impacts were compared to the experimental results and used to evaluate and guide the overall design process. This paper will include the detailed transversely isotropic computer simulations of the Kevlar/carbon composite cross-section as well as the experimental results and a comparison between the two. Conclusions will be drawn about the design process and the validity of current computer modeling methods for Kevlar and carbon composites. Copyright © 2005 by ASME.

More Details

Empirical slip and viscosity model performance for microscale gas flow

International Journal for Numerical Methods in Fluids

McNenly, Matthew J.; Gallis, Michael A.; Boyd, Iain D.

For the simple geometries of Couette and Poiseuille flows, the velocity profile maintains a similar shape from continuum to free molecular flow. Therefore, modifications to the fluid viscosity and slip boundary conditions can improve the continuum based Navier-Stokes solution in the non-continuum non-equilibrium regime. In this investigation, the optimal modifications are found by a linear least-squares fit of the Navier-Stokes solution to the non-equilibrium solution obtained using the direct simulation Monte Carlo (DSMC) method. Models are then constructed for the Knudsen number dependence of the viscosity correction and the slip model from a database of DSMC solutions for Couette and Poiseuille flows of argon and nitrogen gas, with Knudsen numbers ranging from 0.01 to 10. Finally, the accuracy of the models is measured for non-equilibrium cases both in and outside the DSMC database. Flows outside the database include: combined Couette and Poiseuille flow, partial wall accommodation, helium gas, and non-zero convective acceleration. The models reproduce the velocity profiles in the DSMC database within an L2 error norm of 3% for Couette flows and 7% for Poiseuille flows. However, the errors in the model predictions outside the database are up to five times larger. Copyright © 2005 John Wiley & Sons, Ltd.

More Details

Long-working-distance incoherent-light interference microscope

Applied Optics

Sinclair, Michael B.; De Boer, Maarten P.; Corwin, Alex D.

We describe the design and operation of a long-working-distance, incoherent light interference microscope that has been developed to address the growing demand for new microsystem characterization tools. The design of the new microscope is similar to that of a Linnik interference microscope and thus preserves the full working distance of the long-working-distance objectives utilized. However, in contrast to a traditional Linnik microscope, the new microscope does not rely on the use of matched objectives in the sample and the reference arms of the interferometer. An adjustable optical configuration has been devised that allows the total optical path length, wavefront curvature, and dispersion of the reference arm to be matched to the sample arm of the interferometer. The reference arm configuration can be adjusted to provide matching for 5×, 10×, and 20× long-working-distance objectives in the sample arm. In addition to retaining the full working distance of the sample arm objectives, the new design allows interference images to be acquired in situations in which intervening windows are necessary, such as occur with packaged microsystems, microfluidic devices, and cryogenic, vacuum, or environmental chamber studies of microsystem performance. The interference microscope is compatible with phase-shifting interferometry, vertical scanning interferometry, and stroboscopic measurement of dynamic processes. © 2005 Optical Society of America.

More Details

An experimental investigation of the effect of walls on gas-liquid flows through fixed particle

Proceedings of the American Society of Mechanical Engineers Fluids Engineering Division Summer Conference

Cooper, Marcia A.; Cote, Raymond O.; O'Hern, Timothy J.; Torczynski, John R.; Evans, Lindsey R.; Cross, William M.

The effect of particle diameter on downward co-current gas-liquid flow through a fixed bed of particles confined within a cylindrical column is investigated. Several hydrodynamic regimes that depend strongly on the properties of the gas stream, the liquid stream, and the packed particle bed are known to exist within these systems. This experimental study focuses on characterizing the effect of wall confinement on these hydrodynamic regimes as the diameter d of the spherical particles becomes comparable to the column diameter D (or D/d becomes order-unity). The packed bed consists of polished, solid, spherical, monodisperse particles (beads) with mean diameter in the range of 0.64-2.54 cm. These diameters yield D/d values between 15 and 3.75, so this range overlaps and extends the previously investigated range for two-phase flow. Measurements of the pressure drop across the bed and across the pulses are obtained for varying gas and liquid flow rates. Copyright © 2005 by ASME.

More Details

Testing IFE materials on Z

Journal of Nuclear Materials

Tanaka, Tina J.; Rochau, Gary E.; Peterson, Robert R.; Olson, Craig L.

On a single-pulse basis, the tungsten armor for the chamber walls in a laser inertial fusion energy power plant must withstand X-ray fluences of 0.4-1.2 J/cm2 with almost no mass loss, and preferably no surface changes. We have exposed preheated tungsten samples to 0.27 and 0.9 J/cm 2 X-ray fluence from the Z accelerator at Sandia National Laboratories to determine the single-shot X-ray damage threshold. Earlier focused ion beam analysis has shown that rolled powdered metal formed tungsten and tungsten alloys, will melt when exposed to 2.3 J/cm2 on Z, but not at 1.3 J/cm2. Three forms of tungsten - single-crystal (SING), chemical-vapor-deposited (CVD), and rolled powdered metal (PWM) - were exposed to fluence levels of 0.9 J/cm2 without any apparent melting. However, the CVD and PWM sample surfaces were rougher after exposure than the SING sample, which was not roughened. BUCKY (1D) calculations show a threshold of 0.5 J/cm2 for melting on Z. The present experiments indicate no melting but limited surface changes occur with polycrystalline samples (PWM and CVD) at 0.9 J/cm2 and no surface changes other than debris for samples at 0.27 J/cm2. © 2005 Elsevier B.V. All rights reserved.

More Details
Results 85126–85150 of 99,299
Results 85126–85150 of 99,299