Publications

Results 85151–85175 of 99,299

Search results

Jump to search filters

Thermal decomposition of energetic materials. 5. Reaction processes of 1,3,5-trinitrohexahydro-s-triazine below Its melting point

Journal of Physical Chemistry A

Maharrey, Sean; Behrens, Richard

Through the use of simultaneous thermogravimetry modulated beam mass spectrometry, optical microscopy, hot-stage time-lapsed microscopy, and scanning electron microscopy measurements, the physical and chemical processes that control the thermal decomposition of 1,3,5-trinitrohexahydro-s-triazine (RDX) below its melting point (160-189°C) have been identified. Two gas-phase reactions of RDX are predominant during the early stages of an experiment. One involves the loss of HONO and HNO and leads to the formation of H 2O, NO, NO 2, and oxy-s-triazine (OST) or s-triazine. The other involves the reaction of NO with RDX to form NO 2 and 1-nitroso-3,5-dinitrohexahydro-s-triazine (ONDNTA), which subsequently decompose's to form a set of products of which CH 2O and N 2O are the most abundant. Products from the gas-phase RDX decomposition reactions, such as ONDNTA, deposit on the surface of the RDX particles and lead to the development of a new set of reaction pathways that occur on the surface of the RDX particles. The initial surface reactions occur on surfaces of those RDX particles in the sample that can accumulate the greatest amount of products from the gas-phase reactions. Initial surface reactions are characterized by the formation of islands of reactivity on the RDX surface and lead to the development of an orange-colored nonvolatile residue (NVR) film on the surface of the RDX particles. The NVR film is most likely formed via the decomposition of ONDNTA on the surface of the RDX particles. The NVR film is a nonstoichiometric and dynamic material, which reacts directly with RDX and ONDNTA, and is composed of remnants from RDX and ONDNTA molecules that have reacted with the NVR. Reactions involving the NVR become dominant during the later stage of the decomposition process. The NVR reacts with RDX to form ONDNTA via abstraction of an oxygen atom from an NO 2 group. ONDNTA may undergo rapid loss of N 2 and NO 2 with the remaining portion of the molecule being incorporated into the dynamic NVR. The dynamic NVR also decomposes and leads to the formation of H 2O, CH 2O, N 2O, NH 2CHO, (CH 3) 2NCHO, (CH 3) 2NNO, C 2H 2N 2O, and (CH 3) 3N or CH 3NCH 2CH 3. The competition between reaction of the dynamic NVR with RDX and its own thermal decomposition manifests itself in a rapid increase in the rate of evolution of the NVR decomposition products as the amount of RDX remaining in the sample nears depletion. The reactions between the NVR film and RDX on the surface of the RDX particles leads to a localized environment that creates a layer of molten RDX on the surface of the particles where reactions associated with the liquid-phase decomposition of RDX may occur. The combination of these reaction processes leads to an acceleration of the reaction rate in the later stage of the decomposition process and creates an apparent reaction rate behavior that has been referred to as autocatalytic in many previous studies of RDX decomposition. A reaction scheme summarizing the reaction pathways that contribute to the decomposition of RDX below its melting point is presented. © 2005 American Chemical Society.

More Details

Solvent evaporation and interdiffusion in polymer films

Journal of Physics Condensed Matter

Tsige, Mesfin; Grest, Gary S.

Solvent evaporation from homopolymer and heteropolymer films along with the interdiffusion of solvent into these films are studied by molecular dynamics simulations. Due to the high viscosity of polymer melts, in many cases polymer films are made by first dissolving the polymer in a low viscosity solvent, spreading the solution on a substrate and subsequently evaporating the solvent. Here we study the last part of this process, namely the evaporation of solvent from a polymer film. As the solvent evaporates, the polymer density at the film/vapour interface is found to increase sharply, creating a polymer density gradient which acts as a barrier for further solvent evaporation. For both homopolymer and heteropolymer films, the rate of solvent evaporation is found to decrease exponentially as a function of time. For multiblock co-polymer films the resulting domain structure is found to be strongly affected by the relative stiffness of the two blocks. The reverse process, namely the interdiffusion of solvent into a polymer film, is also studied. For homopolymer films the weight gain by the film scales as t1/2, which is expected for Fickian diffusion. The diffusivity D(c) determined from the one-dimensional Fick's diffusion equation agrees well with that calculated from the corrected diffusion constant using the Darken equation. Far above the polymer glass transition temperature, D(c) is nearly independent of concentration. However, as the temperature decreases D(c) is found to depend strongly on the state of the polymer and is related to the shape of the solvent concentration profile. Finally, the swelling of a multiblock copolymer film in which the stiffer block is below its glass transition temperature is also studied. While the solvent swells only the softer block of the copolymer, the weight gain by the film remains Fickian. © 2005 IOP Publishing Ltd.

More Details

Encapsulation of semiconducting nanoclusters in amine-functionalized ormosils

Proceedings - Electrochemical Society

Thoma, S.G.; Wilcoxon, Jess P.; Abrams, B.L.; Sanchez, A.

Inorganic nanoclusters dispersed in organic matrices are of importance to a number of emerging technologies. However, obtaining useful properties from such organic-inorganic composites often requires high concentrations of well-dispersed nanoclusters. In order to achieve this goal the chemistry of the particle surface and the matrix must be closely matched. This is based on the premise of minimization of the interfacial free energy; an excess of free energy will cause phase separation and ultimately aggregation. Thus, the optimal system is one in which the nanoclusters are stabilized by the same molecules that make up the encapsulant. Yet, the organic matrix is typically chosen for its bulk properties, and therefore may not be amenable to chemical modification. Also, the organic-inorganic interface is often critical to establishing and maintaining the desired nanocluster (and hence composite) properties, placing further constraints on proposed chemical modification. For these reasons we have adopted the use of aminefunctionalized trimethoxysilanes (ormosils) as an optical grade encapsulant. In this work, we demonstrate that ormosils can produce beneficial optical effects that are derived from interfacial phenomena, which can be maintained throughout the encapsulation process.

More Details

A three-dimensional neural recording microsystem with implantable data compression circuitry

Digest of Technical Papers - IEEE International Solid-State Circuits Conference

Olsson, Roy H.; Wise, Kensall

A 256-site microsystem comprises 4 neural recording arrays with integrated amplification and multiplexing circuitry and an implantable spike detection ASIC. The spike detector compresses the amount of neural data by 92%, increasing the total number of channels recorded wirelessly from 25 to 312. The implantable circuitry consumes 5.4mW at 3V. ©2005 IEEE.

More Details

Tensor-Krylov methods for solving large-scale systems of nonlinear equations

SIAM Journal on Numerical Analysis

Bader, Brett W.

This paper develops and investigates iterative tensor methods for solving large-scale systems of nonlinear equations. Direct tensor methods for nonlinear equations have performed especially well on small, dense problems where the Jacobian matrix at the solution is singular or ill-conditioned, which may occur when approaching turning points, for example. This research extends direct tensor methods to large-scale problems by developing three tensor-Krylov methods that base each iteration upon a linear model augmented with a limited second-order term, which provides information lacking in a (nearly) singular Jacobian. The advantage of the new tensor-Krylov methods over existing large-scale tensor methods is their ability to solve the local tensor model to a specified accuracy, which produces a more accurate tensor step. The performance of these methods in comparison to Newton-GMRES and tensor-GMRES is explored on three Navier-Stokes fluid flow problems. The numerical results provide evidence that tensor-Krylov methods are generally more robust and more efficient than Newton-GMRES on some important and difficult problems. In addition, the results show that the new tensor-Krylov methods and tensor-GMRES each perform better in certain situations. © 2005 Society for Industrial and Applied Mathematics.

More Details

Hard-rock field performance of drag bits and a downhole Diagnostics-While-Drilling (DWD) tool

Transactions - Geothermal Resources Council

Wise, Jack L.; Mansure, Arthur J.; Blankenship, Douglas A.

A series of field tests sponsored by Sandia National Laboratories has simultaneously demonstrated the hard-rock drilling performance of different industry-supplied drag bits as well as Sandia's new Diagnostics-While-Drilling (DWD) system, which features a novel downhole tool that monitors dynamic conditions in close proximity to the bit. Drilling with both conventional and advanced ("best effort") drag bits was conducted at the GTI Catoosa Test Facility (near Tulsa, OK) in a well-characterized lithologic column that features an extended hard-rock interval of Mississippi limestone above a layer of highly abrasive Misener sandstone and an underlying section of hard Arbuckle dolomite. Output from the DWD system was closely observed during drilling and was used to make real-time decisions for adjusting the drilling parameters. This paper summarizes penetration rate and damage results for the various drag bits, shows representative DWD display data, and illustrates the application of these data for optimizing drilling performance and avoiding trouble.

More Details

A comparison of mechanical properties of three MEMS materials - Silicon carbide, ultrananocrystalline diamond, and hydrogen-free tetrahedral amorphous carbon (Ta-C)

11th International Conference on Fracture 2005, ICF11

Espinosa, H.D.; Peng, B.; Moldovan, N.; Friedmann, Thomas A.; Xiao, X.; Mancini, D.C.; Auciello, O.; Carlisle, J.; Zorman, C.A.

Many MEMS devices are based on polysilicon because of the current availability of surface micromachining technology. However, polysilicon is not the best choice for devices where extensive sliding and/or thermal fields are applied due to its chemical, mechanical and tribological properties. In this work, we investigated the mechanical properties of three new materials for MEMS/NEMS devices: silicon carbide (SiC) from Case Western Reserve University (CWRU), ultrananocrystalline diamond (UNCD) from Argonne National Laboratory (ANL), and hydrogen-free tetrahedral amorphous carbon (ta-C) from Sandia National Laboratories (SNL). Young's modulus, characteristic strength, fracture toughness, and theoretical strength were measured for these three materials using only one testing methodology - the Membrane Deflection Experiment (MDE) developed at Northwestern University. The measured values of Young's modulus were 430GPa, 960GPa, and 800GPa for SiC, UNCD, and ta-C, repectively. Fracture toughness measurments resulted in values of 3.2, 4.5, and 6.2 MPa×m 1/2, respectively. The strengths were found to follow a Weibull distribution but their scaling was found to be controlled by different specimen size parameters. Therefore, a cross comparison of the strengths is not fully meaningful. We instead propose to compare their theoretical strengths as determined by employing Novozhilov fracture criterion. The estimated theoretical strength for SiC is 10.6GPa at a characteristic length of 58nm, for UNCD is 18.6GPa at a characteristic length of 37nm, and for ta-C is 25.4GPa at a characteristic length of 38nm. The techniques used to obtained these results as well as microscopic fractographic analyses are summarized in the article. We also highlight the importance of characterizing mechanical properties of MEMS materials by means of only one simple and accurate experimental technique.

More Details

A computational study of explosive hazard potential for reuseable launch vehicles

Collection of Technical Papers - AIAA Space 2005 Conference and Exposition

Freitas, Christopher J.; Chocron, Sidney; Palmer, Donald; Langley, Patrick; Kipp, Marlin E.; Saul, WVenner S.; Langston, Leo J.

Catastrophic failure of a Reusable Launch Vehicle (RLV) during launch poses a significant engineering problem in the context of crew escape. The explosive hazard potential of the RLV changes during the various phases of the launch. The hazard potential in the on-pad environment is characterized by release and formation of a gas phase mixture in an oxidizer rich environment, while the hazard during the in-flight phase is dominated by the boundary layer and wake flow formed around the vehicle and the interaction with the exhaust gas plume. In order to address more effectively crew escape in these explosive environments a computational analysis program was undertaken by Lockheed Martin, funded by NASA JSC, with simulations and analyses completed by Southwest Research Institute and Sandia National Laboratories. This paper presents then the details of the methodology used in this analysis, results of the study, and important conclusions that came out of the study. Copyright © 2005 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

More Details

A gas-cooled-reactor closed-Brayton-cycle demonstration with nuclear heating

AIP Conference Proceedings

Lipinski, Ronald J.; Wright, Steven A.; Dorsey, Daniel J.; Peters, Curtis; Brown, Nicholas; Williamson, Joshua; Jablonski, Jennifer

A gas-cooled reactor may be coupled directly to turbomachinery to form a closed-Brayton-cycle (CBC) system in which the CBC working fluid serves as the reactor coolant. Such a system has the potential to be a very simple and robust space-reactor power system. Gas-cooled reactors have been built and operated in the past, but very few have been coupled directly to the turbomachinery in this fashion. In this paper we describe the option for testing such a system with a small reactor and turbomachinery at Sandia National Laboratories. Sandia currently operates the Annular Core Research Reactor (ACRR) at steady-state powers up to 4 MW and has an adjacent facility with heavy shielding in which another reactor recently operated. Sandia also has a closed-Brayton-Cycle test bed with a converted commercial turbomachinery unit that is rated for up to 30 kWe of power. It is proposed to construct a small experimental gas-cooled reactor core and attach this via ducting to the CBC turbomachinery for cooling and electricity production. Calculations suggest that such a unit could produce about 20 kWe, which would be a good power level for initial surface power units on the Moon or Mars. The intent of this experiment is to demonstrate the stable start-up and operation of such a system. Of particular interest is the effect of a negative temperature power coefficient as the initially cold Brayton gas passes through the core during startup or power changes. Sandia's dynamic model for such a system would be compared with the performance data. This paper describes the neutronics, heat transfer, and cycle dynamics of this proposed system. Safety and radiation issues are presented. The views expressed in this document are those of the author and do not necessarily reflect agreement by the government. © 2005 American Institute of Physics.

More Details

Modal analysis for model validation in micro-fabricated devices

Conference Proceedings of the Society for Experimental Mechanics Series

Sumali, Hartono (Anton); Epp, David S.; Fulcher, Clay W.

Experimental modal analysis (EMA) was carried out on a micro-machined acceleration switch to characterize the motions of the device as fabricated and to compare this with analytical results for the nominal design. Finite element analysis (FEA) of the nominal design was used for this comparison. The acceleration switch was a single-crystal silicon disc supported by four fork-shaped springs. We shook the base of the die with step sine type excitation. A Laser Doppler Velocimeter (LDV) in conjunction with a microscope was used to measure the velocities of the die at several points. The desired first three modes of the structure were identified. The fundamental natural frequency that we measured in this experiment gives an estimate of the actuation g-level for the specified stroke. The fundamental resonance and actuation g-level results from the EMA and the FEA showed large variations. The discrepancy prompted thorough dimensional measurement of the acceleration switch, which revealed discrepancies between the nominal design and tested component.

More Details

Testing in a combined vibration and acceleration environment

Conference Proceedings of the Society for Experimental Mechanics Series

Jepsen, Richard A.; Romero, Edward

Sandia National Laboratories has previously tested a capability to impose a 7.5 g-rms (30 g peak) radial vibration load up to 2 kHz on a 25 lb object with superimposed 50 g acceleration at its centrifuge facility. This was accomplished by attaching a 3,000 lb Unholtz-Dickie mechanical shaker at the end of the centrifuge arm to create a "Vibrafuge". However, the combination of non-radial vibration directions, and linear accelerations higher than 50g's are currently not possible because of the load capabilities of the shaker and the stresses on the internal shaker components due to the combined centrifuge acceleration. Therefore, a new technique using amplified piezo-electric actuators has been developed to surpass the limitations of the mechanical shaker system. They are lightweight, modular and would overcome several limitations presented by the current shaker. They are 'scalable', that is, adding more piezo-electric units in parallel or in series can support larger-weight test articles or displacement/frequency regimes. In addition, the units could be mounted on the centrifuge arm in various configurations to provide a variety of input directions. The design along with test results will be presented to demonstrate the capabilities and limitations of the new piezo-electric Vibrafuge.

More Details

On chain branching and its role in homogeneous ignition and premixed flame propagation

3rd M.I.T. Conference on Computational Fluid and Solid Mechanics

Lee, J.C.; Najm, Habib N.; Lefantzi, S.; Ray, J.; Frenklach, M.; Valorani, M.; Goussis, D.A.

The role of chain branching in a chemical kinetic system was investigated by analyzing the eigenvalues of the system. We found that in the homogeneous ignition of the hydrogen/air and methane/air mixtures, the branching mechanism gives rise to explosive modes (eigenvalues with positive real parts) in the induction period as expected; however, in their respective premixed flames, we found none. Thus, their existence is not a necessary condition for the propagation of a premixed flame. © 2005 Elsevier Ltd.

More Details

Nonlinear response of a lap-type joint using a whole-interface model

Conference Proceedings of the Society for Experimental Mechanics Series

Segalman, Daniel J.; Holzmann, Wil A.

Structural assemblies often include bolted connections that are a primary mechanism for energy dissipation and nonlinear response at elevated load levels. Typically these connections are idealized within a structural dynamics finite element model as linear elastic springs. The spring stiffness is generally tuned to reproduce modal test data taken on a prototype. In conventional practice, modal test data is also used to estimate nominal values of modal damping that could be used in applications with load amplitudes comparable to those employed in the modal tests. Although this simplification of joint mechanics provides a convenient modeling approach with the advantages of reduced complexity and solution requirements, it often leads to poor predicted responses for load regimes associated with nonlinear system behavior. In this document we present an alternative approach using the concept of a "whole-joint" or "whole-interface" model [1]. We discuss the nature of the constitutive model, the manner in which model parameters are deduced, and comparison of structural dynamic prediction with results for experimental hardware subjected to a series of transient excitations beginning at low levels and increasing to levels that produced macro-slip in the joint. Further comparison is performed with a traditional "tuned" linear model. The ability of the whole-interface model to predict the onset of macro-slip as well as the vast improvement of the response levels in relation to those given by the linear model is made evident. Additionally, comparison between prediction and high amplitude experiments suggests areas for further work.

More Details

Quantifying uncertainty in an admittance model due to a test fixture

Conference Proceedings of the Society for Experimental Mechanics Series

Simmons, Leslie A.; Smith, Gregory A.; Mayes, Randall L.; Epp, David S.

This paper addresses the coupling of experimental and finite element models of substructures. In creating the experimental model, difficulties exist in applying moments and estimating resulting rotations at the connection point between the experimental and finite element models. In this work, a simple test fixture for applying moments and estimating rotations is used to more accurately estimate these quantities. The test fixture is analytically "subtracted" from the model using the admittance approach. Inherent in this process is the inversion of frequency response function matrices that can amplify the uncertainty in the measured data. Presented here is the work applied to a two-component beam model and analyses that attempt to identify and quantify some of these uncertainties. The admittance model of one beam component was generated experimentally using the moment-rotation fixture, and the other from a detailed finite element model. During analytical testing of the admittance modeling algorithm, it was discovered that the component admittance models generated by finite elements were ill conditioned due to the inherent physics.

More Details

An experimental procedure to validate a honeycomb structure

Conference Proceedings of the Society for Experimental Mechanics Series

Stasiunas, Eric C.; Carne, Thomas G.; Hinnerichs, Terry D.; Rogillio, Brendan R.

In order to create an analytical model of a material or structure, two sets of experiments must be performed-calibration and validation. Calibration experiments provide the analyst with the parameters from which to build a model that encompasses the behavior of the material. Once the model is calibrated, the new analytical results must be compared with a different, independent set of experiments, referred to as the validation experiments. This modeling procedure was performed for a crushable honeycomb material, with the validation experiments presented here. This paper covers the design of the validation experiments, the analysis of the resulting data, and the metric used for model validation.

More Details

Enhancing NIC performance for MPI using processing-in-memory

Proceedings - 19th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2005

Rodrigues, Arun; Murphy, Richard; Brightwell, Ronald B.; Underwood, Keith D.

Processing-in-Memory (PIM) technology encompasses a range of research leveraging a tight coupling of memory and processing. The most unique features of the technology are extremely wide paths to memory, extremely low memory latency, and wide functional units. Many PIM researchers are also exploring extremely fine-grained multi-threading capabilities. This paper explores a mechanism for leveraging these features of PIM technology to enhance commodity architectures in a seemingly mundane way: accelerating MPI. Modern network interfaces leverage simple processors to offload portions of the MPI semantics, particularly the management of posted receive and unexpected message queues. Without adding cost or increasing clock frequency, using PIMs in the network interface can enhance performance. The results are a significant decrease in latency and increase in small message bandwidth, particularly when long queues are present.

More Details

Computational stability study of 3D flow in a differentially heated 8:1:1 cavity

3rd M.I.T. Conference on Computational Fluid and Solid Mechanics

Salinger, Andrew G.

The critical Rayleigh number Racr of the Hopf bifurcation that signals the limit of steady flows in a differentially heated 8:1:1 cavity is computed. The two-dimensional analog of this problem was the subject of a comprehensive set of benchmark calculations that included the estimation of Racr [1]. In this work we begin to answer the question of whether the 2D results carry over into 3D models. For the case of the 2D model being extruded for a depth of 1, and no-slip/no-penetration and adiabatic boundary conditions placed at these walls, the steady flow and destabilizing eigenvectors qualitatively match those from the 2D model. A mesh resolution study extending to a 20-million unknown model shows that the presence of these walls delays the first critical Rayleigh number from 3.06 × 105 to 5.13 × 105. © 2005 Elsevier Ltd.

More Details

Mimicking photosynthesis to make functional nanostructures and nanodevices

2005 NSTI Nanotechnology Conference and Trade Show - NSTI Nanotech 2005 Technical Proceedings

Shelnutt, John A.; Wang, Z.; Song, Y.; Medforth, Craig J.; Pereira, E.

The processes and functional constituents of biological photosynthetic systems can be mimicked to produce a variety of functional nanostructures and nanodevices. The photosynthetic nanostructures produced are analogs of the naturally occurring photosynthetic systems and are composed of biomimetic compounds (e.g., porphyrins). For example, photocatalytic nanotubes can be made by ionic self-assembly of two oppositely charged porphyrins tectons [1]. These nanotubes mimic the light-harvesting and photosynthetic functions of biological systems like the chlorosomal rods and reaction centers of green sulfur bacteria. In addition, metal-composite nanodevices can be made by using the photocatalytic activity of the nanotubes to reduce aqueous metal salts to metal atoms, which are subsequently deposited onto tube surfaces [2]. In another approach, spatial localization of photocatalytic porphyrins within templating surfactant assemblies leads to controlled growth of novel dendritic metal nanostructures [3].

More Details

Top-down vs. bottom-up uncertainty quantification for validation of a mechanical joint model

Conference Proceedings of the Society for Experimental Mechanics Series

Hasselman, Timothy; Wathugala, G.W.; Urbina, Angel; Paez, Thomas L.

Mechanical systems behave randomly and it is desirable to capture this feature when making response predictions. Currently, there is an effort to develop predictive mathematical models and test their validity through the assessment of their predictive accuracy relative to experimental results. Traditionally, the approach to quantify modeling uncertainty is to examine the uncertainty associated with each of the critical model parameters and to propagate this through the model to obtain an estimate of uncertainty in model predictions. This approach is referred to as the "bottom-up" approach. However, parametric uncertainty does not account for all sources of the differences between model predictions and experimental observations, such as model form uncertainty and experimental uncertainty due to the variability of test conditions, measurements and data processing. Uncertainty quantification (UQ) based directly on the differences between model predictions and experimental data is referred to as the "top-down" approach. This paper discusses both the top-down and bottom-up approaches and uses the respective stochastic models to assess the validity of a joint model with respect to experimental data not used to calibrate the model, i.e. random vibration versus sine test data. Practical examples based on joint modeling and testing performed by Sandia are presented and conclusions are drawn as to the pros and cons of each approach.

More Details

Dynamic modeling and control of nuclear reactors coupled to closed-loop brayton cycle systems using SIMULINK™

AIP Conference Proceedings

Wright, Steven A.; Sanchez, Travis

The operation of space reactors for both in-space and planetary operations will require unprecedented levels of autonomy and control. Development of these autonomous control systems will require dynamic system models, effective control methodologies, and autonomous control logic. This paper briefly describes the results of reactor, power-conversion, and control models that are implemented in SIMULINK™ (Simulink, 2004). SIMULINK™ is a development environment packaged with MatLab™ (MatLab, 2004) that allows the creation of dynamic state flow models. Simulation modules for liquid metal, gas cooled reactors, and electrically heated systems have been developed, as have modules for dynamic power-conversion components such as, ducting, heat exchangers, turbines, compressors, permanent magnet alternators, and load resistors. Various control modules for the reactor and the power-conversion shaft speed have also been developed and simulated. The modules are compiled into libraries and can be easily connected in different ways to explore the operational space of a number of potential reactor, power-conversion system configurations, and control approaches. The modularity and variability of these SIMULINK™ models provides a way to simulate a variety of complete power generation systems. To date, both Liquid Metal Reactors (LMR), Gas Cooled Reactors (GCR), and electric heaters that are coupled to gas-dynamics systems and thermoelectric systems have been simulated and are used to understand the behavior of these systems. Current efforts are focused on improving the fidelity of the existing SIMULINK™ modules, extending them to include isotopic heaters, heat pipes, Stirling engines, and on developing state flow logic to provide intelligent autonomy. The simulation code is called RPC-SIM (Reactor Power and Control-Simulator). © 2005 American Institute of Physics.

More Details

Irregular buffer-zone partitioning reducing synchronization cost in SAMR

Proceedings - 19th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2005

Steensland, Johan

Achieving good scalability for large simulations based on structured adaptive mesh refinement is non-trivial. Performance is limited by the partitioner's ability to efficiently use the underlying parallel computer's resources. Domainbased partitioners serve as a foundation for techniques designed to improve the scalability and they have traditionally been designed on the basis of an independence assumption regarding the computational flow among grid patches at different refinement levels. But this assumption does not hold in practice. Hence the effectiveness of these techniques is significantly impaired. This paper introduces a partitioning method designed on the true premises. The method is tested for four different applications exhibiting different behaviors. The results show that synchronization costs on average can he reduced by 75 percent. The conclusion is that the method is suitable as a foundation in general hierarchical methods designed to improve the scalability of structured adaptive mesh refinement applications.

More Details

Operational results of a closed Brayton cycle test-loop

AIP Conference Proceedings

Wright, Steven A.; Fuller, Robert; Lipinski, Ronald; Nichols, Kenneth; Brown, Nicholas

A number of space and terrestrial power system designs plan to use nuclear reactors that are coupled to Closed-loop Brayton Cycle (CBC) systems to generate electrical power. Because very little experience exists regarding the operational behavior of these systems, Sandia National Laboratories (through its Laboratory Directed Research and Development program) is developing a closed-loop test bed that can be used to determine the operational behavior of these systems and to validate models for these systems. Sandia has contracted Barber-Nichols Corporation to design, fabricate, and assemble a Closed-loop Brayton Cycle (CBC) system. This system was developed by modifying commercially available hardware. It uses a 30 kWe Capstone C-30 gas-turbine unit (www.capstoneturbine.com) with a modified housing that permits the attachment of an electrical heater and a water cooled chiller that are connected to the turbo-machinery in a closed loop. The test-loop reuses the Capstone turbine, compressor, and alternator. The Capstone system's nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system are also reused. The rotational speed of the turbo-machinery is controlled either by adjusting the alternator load by either using the electrical grid or a separate load bank. This report describes the test-loop hardware SBL-30 (Sandia Brayton Loop-30kWe). Also presented are results of early testing and modeling of the unit. The SBL-30 hardware is currently configured with a heater that is limited to 80 kWth with a maximum outlet temperature of ∼1000 K. © 2005 American Institute of Physics.

More Details

Temperature distributions in LMR fuel pin bundles as modeled by COBRA-IV-I

AIP Conference Proceedings

Wright, Steven A.; Stout, Sherry

Most pin type reactor designs for space power or terrestrial applications group the fuel pins into a number of relatively large fuel pin bundles or subassemblies. Fuel bundles for terrestrial liquid metal fast breeders reactors typically use 217 - 271 pins per sub-assembly, while some SP100 designs use up to 331 pins in a central subassembly that was surrounded by partial assemblies. Because thermal creep is exponentially related to temperature, small changes in fuel pin cladding temperature can make large differences in the lifetime in a high temperature liquid metal reactor (LMR). This paper uses the COBRA-IV-I computer code to determine the temperature distribution within LMR fuel bundles. COBRA-IV-I uses the sub-channel analysis approach to determine the enthalpy (or temperature) and flow distribution in rod bundles for both steady-state and transient conditions. The COBRA code runs in only a few seconds and has been benchmarked and tested extensively over a wide range of flow conditions. In this report the flow and temperature distributions for two types of lithium cooled space reactor core designs were calculated. One design uses a very tight fuel pin packing that has a pitch to diameter ratio of 1.05 (small wire wrap with a diameter of 392 μm) as proposed in SP100. The other design uses a larger pitch to diameter ratio of 1.09 with a larger more conventional sized wire wrap diameter of 1 mm. The results of the COBRA pin bundle calculations show that the larger pitch-to-diameter fuel bundle designs are more tolerant to local flow blockages, and in addition they are less sensitive to mal-flow distributions that occur near the edges of the subassembly. © 2005 American Institute of Physics.

More Details

Considering the relative importance of network performance and network features

Proceedings of the International Conference on Parallel Processing

Lawry, William L.; Underwood, Keith D.

Latency and bandwidth are usually considered to be the dominant factor in parallel application performance; however, recent studies have indicated that support for independent progress in MPI can also have a significant impact on application performance. This paper leverages the Cplant system at Sandia National Labs to compare a faster, vendor provided MPI library without independent progress to an internally developed MPI library that sacrifices some performance to provide independent progress. The results are surprising. Although some applications see significant negative impacts from the reduced network performance, others are more sensitive to the presence of independent progress. © 2005 IEEE.

More Details

Evaluation of Detached Eddy Simulation for turbulent wake applications

43rd AIAA Aerospace Sciences Meeting and Exhibit - Meeting Papers

Barone, Matthew F.; Roy, Christopher J.

Simulations of a low-speed square cylinder wake and a supersonic axisymmetric base wake are performed using the Detached Eddy Simulation (DES) model. A reduced-dissipation form of the Symmetric TVD scheme is employed to mitigate the effects of dissipative error in regions of smooth flow. The reduced-dissipation scheme is demonstrated on a 2D square cylinder wake problem, showing a dramatic increase in accuracy for a given grid resolution. The results for simulations on three grids of increasing resolution for the 3D square cylinder wake are compared to experimental data and to other LES and DES studies. The comparisons of mean flow and global mean flow quantities to experimental data are favorable, while the results for second order statistics in the wake are mixed and do not always improve with increasing spatial resolution. Comparisons to LES studies are also generally favorable, suggesting DES provides an adequate subgrid scale model. Predictions of base drag and centerline wake velocity for the supersonic wake are also good, given sufficient grid refinement. These cases add to the validation library for DES and support its use as an engineering analysis tool for accurate prediction of global flow quantities and mean flow properties.

More Details
Results 85151–85175 of 99,299
Results 85151–85175 of 99,299