Creating Attractive and Customizable Portlets Using Java and PL/SQL
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Physical Chemistry Chemical Physics.
We used molecular dynamics simulations to study the adsorption of aqueous uranyl species (UO22+) onto clay mineral surfaces in the presence of sodium counterions and carbonato ligands. The large system size (10 000 atoms) and long simulation times (10 ns) allowed us to investigate the thermodynamics of ion adsorption, and the atomistic detail provided clues for the observed adsorption behavior. The model system consisted of the basal surface of a low-charge Na-montmorillonite clay in contact with aqueous uranyl carbonate solutions with concentrations of 0.027 M, 0.081 M, and 0.162 M. Periodic boundary conditions were used in the simulations to better represent an aqueous solution interacting with an external clay surface. Uranyl adsorption tendency was found to decrease as the aqueous uranyl carbonate concentration was increased, while sodium adsorption remained constant. The observed behavior is explained by physical and chemical effects. As the ionic strength of the aqueous solution was increased, electrostatic factors prevented further uranyl adsorption once the surface charge had been neutralized. Additionally, the formation of aqueous uranyl carbonate complexes, including uranyl carbonato oligomers, contributed to the decreased uranyl adsorption tendency.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Surface Science.
We have used scanning tunneling microscopy and low-energy electron microscopy to measure the thermal decay of two-dimensional Cu, Pb-overlayer, and Pb-Cu alloy islands on Pb-Cu(1 1 1) surface alloys. Decay rates covering 6-7 orders of magnitude are accessible by applying the two techniques to the same system. We find that Cu adatom diffusion across the surface alloy is rate-limiting for the decay of both Pb and Pb-Cu islands on the surface alloy and that this rate decreases monotonically with increasing Pb concentration in the alloy. The decrease is attributed to repulsive interactions between Cu adatoms and embedded Pb atoms in the surface alloy. The measured temperature dependences of island decay rates are consistent with first-principles calculations of the Cu binding and diffusion energies related to this 'site-blocking' effect.
Proposed for publication in Physical Review Letters.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in the Journal of Physical Chemistry.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Physical Chemistry Chemical Physics (PCCP).
We investigate the liquid structure, ion hydration, and some thermodynamic properties associated with the rigid geometry approximation to water by applying ab initio molecular dynamics simulations (AIMD) with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional at T = 320 K. We vary the rigid water geometry in order to locate a class of practical water models that yield reasonable liquid structure and dynamics, and to examine the progression of AIMD-predicted water behavior as the OH bond length varies. Water constrained at the optimal PBE gas phase geometry yields reasonable pair correlation functions. The predicted liquid phase pressure, however, is large ({approx}8.0 kbar). Although the O-H bond in water should elongate when transferred from gas to the condensed phase, when it is constrained to 0.02, or even just 0.01 {angstrom} longer than the optimal gas phase value, liquid water is predicted to be substantially overstructured compared to experiments. Zero temperature calculations of the thermodynamic properties of cubic ice underscore the sensitivity toward small variations in the O-H bond length. We examine the hydration structures of potassium, chloride, and formate ions in one rigid PBE water model. The results are in reasonable agreement with unconstrained AIMD simulations.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in the Journal Propulsion and Power.
Abstract not provided.