Modeling of braided shields
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in the ASR'2004 Proceeding in Japan.
Microorganisms are ubiquitous in subsurface environments and play a major role in the biogeochemical recycling of various elements. In this paper, we have developed a general approach for a systematic evaluation of microbial impact on the long-term performance of the repository. We have demonstrated that data on microbial population alone are not sufficient for the evaluation of microbial impact on repository performance and a sensible approach for such evaluation must be based on the consideration of environmental constraints on microbial reaction pathways. We have applied our approach to both the Yucca Mountain (YM) repository and the Waste Isolation Pilot Plant (WIPP). We have demonstrated that the effect of microbial activity on the near-field chemistry in the Yucca Mountain repository is negligible because of limited nutrient supply and harsh environmental conditions created by waste emplacement. Whereas for the WIPP, we have shown that, due to the presence of a large quantity of organic materials and nutrients in the wastes, a significant microbial activity can potentially be stimulated and its impact on repository performance can be evaluated with carefully designed incubation experiments coupled with performance assessment calculations. The impact of microbial gas generation on disposal room chemistry in the WIPP can be mitigated by introducing MgO as a backfill material.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Linear Algebra and Its Applications.
Abstract not provided.
Abstract not provided.
Proposed for publication in Macromolecules.
This work reports on the grafting of methyl methacrylate polymer brushes containing spirobenzopyran pendant groups from flat silica surfaces and colloidal particles utilizing atom transfer radical polymerization (ATRP). The reaction conditions were optimized with respect to the kind of surface bound initiator, the type of halide and ligand used in the catalytic complex, the presence/absence of untethered initiator, and solvent type. This enabled synthesis of coatings up to 80 {+-} 3 nm thick with controlled spirobenzopyran content. While polymerization kinetics indicate the presence of chain termination reactions, the 'living' character of the process is confirmed by controlled formation of block copolymer brushes. UV/vis spectroscopy was used to characterize the UV-induced isomerization of spirobenzopyran to zwitterionic merocyanine and the thermal back-reaction. Spectral and kinetic analyses of this latter bleaching process points to the existence of free and associated merocyanines in the polymeric brush in both tetrahydrofuran and toluene. However, stabilization of merocyanine species by the polymer matrix is considerably greater in toluene with thermal back-reaction rates approaching those determined for solid dry films.
Proposed for publication in Langmuir.
Colloidal particles were derivatized with end-grafted polymethylmethacryate polymer brushes containing varying concentrations of spirobenzopyran photochromic molecules. The polymers were grown from initiator-functionalized silica partilces by an atom-transfer radical polymerization (ATRP). These core-shell colloids formed stable suspensions in toluene with the spirobenzopyran in its closed, nonpolar form. However, UV-induced photoswitching of the photochrome to its open, polar merocyanine isomer caused rapid aggregation. The nature of this colloidal stability transition was examined with respect to the spirobenzopyran content in the polymeric brush and solvent polarity. Turbidimetry, wettability studies, UV-vis spectroscopy, suspension rheology, SEM, and visual inspection were utilized to characterize the system photoswitchability. It was found that the system exhibiting the greatest transition in toluene was the copolymer brush composed of 20% spirobenzopyran and 80% methyl methacrylate.
Proposed for publication in Langmuir.
Quartz surfaces and colloidal silica particles were derivatized with a poly(methyl methacrylate) copolymer containing spirobenzopyran (SP) photochromic molecules in the pendant groups at a concentration of 20 mol %. Two-photon near-IR excitation ({approx}780 nm) was then used to create chemically distinct patterns on the modified surfaces through a photochromic process of SP transformation to the zwitterionic merocyanine (MC) isomer. The derivatized colloids were approximately 10 times more likely to adsorb onto the photoswitched, MC regions. Surface coverage and adsorption kinetics have been compared to the mean-field model of irreversible monolayer adsorption.
Abstract not provided.
Abstract not provided.
This report examines the design process of a photovoltaic (solar) based power supply for wireless sensor networks. Such a system stores the energy produced by an array of photovoltaic cells in a secondary (rechargeable) battery that in turn provides power to the individual node of the sensor network. The goal of such a power supply is to enable a wireless sensor network to have an autonomous operation on the order of years. Ideally, such a system is as small as possible physically while transferring the maximum amount of available solar energy to the load (the node). Within this report, there is first an overview of current solar and battery technologies, including characteristics of different technologies and their impact on overall system design. Second is a general discussion of modeling, predicting, and analyzing the extended operation of a small photovoltaic power supply and setting design parameters. This is followed by results and conclusions from the testing of a few basic systems. Lastly, some advanced concepts that may be considered in order to optimize future systems will be discussed.
Abstract not provided.
Abstract not provided.
Proposed for publication in PLoS Biology.
Abstract not provided.
Proposed for publication in PLoS Biology.
Abstract not provided.
Proposed for publication in the SIAM Journal on Matrix Analysis and Applications.
In this paper we present a two-level overlapping domain decomposition preconditioner for the finite-element discretization of elliptic problems in two and three dimensions. The computational domain is partitioned into overlapping subdomains, and a coarse space correction, based on aggregation techniques, is added. Our definition of the coarse space does not require the introduction of a coarse grid. We consider a set of assumptions on the coarse basis functions to bound the condition number of the resulting preconditioned system. These assumptions involve only geometrical quantities associated with the aggregates and the subdomains. We prove that the condition number using the two-level additive Schwarz preconditioner is O(H/{delta} + H{sub 0}/{delta}), where H and H{sub 0} are the diameters of the subdomains and the aggregates, respectively, and {delta} is the overlap among the subdomains and the aggregates. This extends the bounds presented in [C. Lasser and A. Toselli, Convergence of some two-level overlapping domain decomposition preconditioners with smoothed aggregation coarse spaces, in Recent Developments in Domain Decomposition Methods, Lecture Notes in Comput. Sci. Engrg. 23, L. Pavarino and A. Toselli, eds., Springer-Verlag, Berlin, 2002, pp. 95-117; M. Sala, Domain Decomposition Preconditioners: Theoretical Properties, Application to the Compressible Euler Equations, Parallel Aspects, Ph.D. thesis, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland, 2003; M. Sala, Math. Model. Numer. Anal., 38 (2004), pp. 765-780]. Numerical experiments on a model problem are reported to illustrate the performance of the proposed preconditioner.
Abstract not provided.
Proposed for publication in Nature.
Abstract not provided.
Abstract not provided.
Abstract not provided.