An Inverse Shock Response Spectrum
Mechanical Systems and Signal Processing
Abstract not provided.
Mechanical Systems and Signal Processing
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Acta Materialia
Abstract not provided.
We use the modified iSAFT density functional theory (DFT) to calculate interactions among nanoparticles immersed in a polymer melt. Because a polymer can simultaneously interact with more than two nanoparticles, three-body interactions are important in this system. We treat the nanoparticles as spherical surfaces, and solve for the polymer densities around the nanoparticles in three dimensions. The polymer is modeled as a freely-jointed chain of spherical sites, and all interactions are repulsive. The potential of mean force (PMF) between two nanoparticles displays a minimum at contact due to the depletion effect. The PMF calculated from the DFT agrees nearly quantitatively with that calculated from self-consistent PRISM theory. From the DFT we find that the three-body free energy is significantly different in magnitude than the effective three-body free energy derived from the two-particle PMF.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Electron Device Letters
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Experimental Mechanics
Abstract not provided.